精英家教网 > 高中数学 > 题目详情
5.已知tan(π+α)=2,则$\frac{sinα+sin(\frac{π}{2}+α)}{sinα+cos(π-α)}$=(  )
A.1B.2C.3D.4

分析 求出正切函数值,然后利用诱导公式以及同角三角函数的基本关系式化简所求表达式为正切函数的形式,即可求解.

解答 解:tan(π+α)=2,可得tanα=2;
则$\frac{sinα+sin(\frac{π}{2}+α)}{sinα+cos(π-α)}$=$\frac{sinα+cosα}{sinα-cosα}$=$\frac{tanα+1}{tanα-1}$=$\frac{2+1}{2-1}$=3.
故选:C.

点评 本题考查诱导公式以及同角三角函数的基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥P-ABCD的底面是边长为a的菱形,平面PCD⊥平面ABCD,PC=a,PD=$\sqrt{2}$a,E为PA的中点,求证:平面EDB⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知cos(40°-α)=$\frac{3}{5}$.且90°<α<180°,求cos(50°+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列四个命题中,正确命题的序号是③
①函数y=x与函数y=a${\;}^{lo{g}_{a}x}$(a>0,且a≠1)相同;
②若幂函数f(x)=xα的图象过点(3,$\sqrt{3}$),则f(x)是偶函数;
③函数y=loga(x-1)+1(a>1)的图象必过定点(2,1);
④函数f(x)=ex+x-2的零点所在的一个区间是(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知角α的终边在图中阴影部分所表示的范围内(不包括边界),则α的取值范围为{α|k•180°+30°<α<k•180°+150°,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数g(x)=2x+a的值域为集合(a,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)的最小正周期为8,且等式f(x+8)=f(-x)对一切实数x成立,则f(x)为偶(填“奇”或“偶”)函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知sin(π-α)-cos(π+α)=$\frac{\sqrt{2}}{3}$($\frac{π}{2}$<α<π).
求:(1)sinα-cosα;
(2)tanα+$\frac{1}{tanα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知角α的终边经过点P(sin15°,-cos15°),则sin2α的值为(  )
A.$\frac{1}{2}$+$\frac{\sqrt{3}}{4}$B.$\frac{1}{2}$-$\frac{\sqrt{3}}{4}$C.$\frac{3}{4}$D.0

查看答案和解析>>

同步练习册答案