精英家教网 > 高中数学 > 题目详情
18.求下列函数的定义域:
(1)y=5${\;}^{\sqrt{x-1}}$;
(2)y=$\sqrt{(\frac{1}{5})^{x}-25}$;
(3)y=$\frac{1}{1-{3}^{x}}$;
(4)y=$\frac{\sqrt{16-{2}^{x}}}{x+4}$.

分析 (1)开平方被开方数非负;(2)开平方被开方数非负,并运用指数函数单调性解题;(3)分母不能为零;(4)开平方被开方数非负且分母不能为零.

解答 解:(1)要使函数式有意义,则x-1≥0,解得x∈[1,+∞),
所以函数的定义域为[1,+∞);
(2)要使函数式有意义,则$(\frac{1}{5})^{x}$-25≥0,即$(\frac{1}{5})^{x}$≥($\frac{1}{5}$)-2,解得x∈(-∞,-2],
所以函数的定义域为(-∞,-2];
(3)要使函数式有意义,则1-3x≠0,解得x≠0,
所以函数的定义域为(-∞,0)∪(0,+∞);
(4)要使函数式有意义,则$\left\{\begin{array}{l}{16-{2}^{x}≥0}\\{x+4≠0}\end{array}\right.$,解得x∈(-∞,-4)∪(-4,4],
所以函数的定义域为(-∞,-4)∪(-4,4].

点评 本题主要考查了函数定义域及其求法,涉及到二次根式成立的条件,指数函数性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.解下列关于x的不等式:
(1)$(\frac{1}{3})^{{x}^{2}-2x}>1$;
(2)log2$\sqrt{x}+lo{g}_{\sqrt{2}}(2x)<\frac{23}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.己知函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是关于x的方程f(x)-g(x)=0的一个解,求t的值;
(2)当0<a<1且t=-1时,解不等式f(x)≤g(x);
(3)若函数F(x)=af(x)+tx2-2t+1在区间(-1,2]上有零点,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)=$\left\{\begin{array}{l}{(3-a)x-4a,x<1}\\{lgx,x≥1}\end{array}\right.$ 是(-∞,+∞)上的增函数,那么a的取值范围是(  )
A.(1,+∞)B.(-∞,3)C.[$\frac{3}{5}$,3)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题p:“x>0,y>0“,命题q:“xy>0“,则命题p是命题q的(  )
A.充要条件B.必要而不充分条件
C.充分而不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=0.2x的图象经过点(  )
A.(0,1)B.(1,0)C.(1,1)D.(0,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.化简$\frac{sin(2A+B)}{sinA}$-2cos(A+B)的结果为(  )
A.sin(A+B)B.cos(2A+B)C.$\frac{sinB}{sinA}$D.tanA

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在[0,2π]上,使不等式2sinx≥1成立的x的集合[$\frac{π}{6}$,$\frac{5π}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若log4(x-1)=$\frac{1}{2}$,则x=3.

查看答案和解析>>

同步练习册答案