精英家教网 > 高中数学 > 题目详情
6.某商店每周购进一批商品,进价为6元/件,若零售价定为10元/件,则可售出120件;当售价降低0.5元/件时,销量增加20件.问售价p定为多少和每周进货多少时利润最大,其值为何?

分析 设售价p定为x元/件时,利润为y元,从而可得y=40(13-x)(x-6),从而解得.

解答 解:设售价p定为x元/件时,利润为y元,
则每周进货120-20$\frac{x-10}{0.5}$=520-40x,
故y=(520-40x)(x-6)
=40(13-x)(x-6),
故当13-x=x-6,即x=9.5时,
利润y有最大值40×3.5×3.5=490元;
此时每天进货520-40×9.5=140;
即当售价p定为9.5元和每周进货140时利润最大,
其值为490元.

点评 本题考查了函数在实际问题中的应用,可以利用基本不等式求最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若x∈R,则函数f(x)=3-5sinx-cos2x的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)=sin($\frac{1}{2}$x+$\frac{π}{3}$),g(x)的图象与f(x)的图象关于y轴对称,将g(x)图象上各点的横坐标缩短为原来的$\frac{1}{2}$(纵坐标不变),再向左平移$\frac{π}{3}$个单位,那么所得图象的一条对称轴方程为(  )
A.x=$\frac{π}{6}$B.x=$\frac{π}{2}$C.x=-$\frac{π}{6}$D.x=-π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=tan(x+φ)的图象的-个对称中心为($\frac{π}{3}$,0)且,|φ|<$\frac{π}{2}$.则φ=$\frac{π}{6}$或-$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,cos($\frac{π}{4}$+A)=$\frac{4}{5}$,则cos2A=(  )
A.$\frac{24}{25}$B.-$\frac{24}{25}$C.-$\frac{7}{25}$D.$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数y=f1(x)是定义域为R的增函数,y=f2(x)是定义域为R的减函数,则(  )
A.函数y=f1(x)+f2(x)是定义城为R的增函数
B.函数y=f1(x)+f2(x)是定义城为R的减函数
C.函数y=f1(x)-f2(x)是定义城为R的增函数
D.函数y=f1(x)-f2(x)是定义城为R的减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC中,a,b,c分别是角A,B,C的对边,已知$\overrightarrow{m}$=(2sinA,-3),$\overrightarrow{n}$=(sinA,1+cosA),满足$\overrightarrow{m}$⊥$\overrightarrow{n}$,且$\sqrt{7}$(c-b)=a.
(1)求角A的大小;
(2)求cos(C-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{|x|+1}{|x+1|}$,
(1)画出该函数的图象;
(2)写出它的定义域,单调区间,奇偶性,值域;
(3)若方程a=$\frac{|x|+1}{|x+1|}$有两个实根,求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.A、B、C三个人,A说B撒谎,B说C撒谎,C说A、B都撒谎.则C必定是在撒谎.

查看答案和解析>>

同步练习册答案