精英家教网 > 高中数学 > 题目详情
3.已知△ABC的三边a,b,c成等差数列,且B=$\frac{π}{4}$,则cosA-cosC的值为(  )
A.±$\sqrt{2}$B.$\sqrt{2}$C.$\root{4}{2}$D.±$\root{4}{2}$

分析 三边a,b,c成等差数列,可得2b=a+c,利用正弦定理可得:2sinB=sinA+sinC,即sinA+sinC=$\sqrt{2}$,设cosA-cosC=m,平方相加即可得出.

解答 解:∵三边a,b,c成等差数列,
∴2b=a+c,
利用正弦定理可得:2sinB=sinA+sinC,
∴sinA+sinC=2sin$\frac{π}{4}$=$\sqrt{2}$,
设cosA-cosC=m,
则平方相加可得:2-2cos(A+C)=2+m2
∴m2=2cosB=$\sqrt{2}$,
解得m=$±\root{4}{2}$.
故选:D.

点评 本题考查了等差数列的通项公式性质、正弦定理、同角三角函数基本关系式、和差公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.(1)若不等式|2x-1|+|x+2|≥m2+$\frac{1}{2}$m+2对任意实数x恒成立,求实数m的取值范围;
(2)设a,b,c大于0,且1≤$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$≤$\frac{2}{5}$(|2x-1|+|x+2|)对任意实数x恒成立,求证:a+2b+3c≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)=1+loga$\frac{1}{x-1}$的图象过定点P,则P的坐标为(2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.增广矩阵$(\begin{array}{l}{3}&{m}&{-1}\\{n}&{1}&{0}\end{array})$的二元一次方程组的实数解为$\left\{\begin{array}{l}x=1\\ y=2\end{array}\right.$,则m+n=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算下列式子的值:
(1)$\frac{1}{\sqrt{5}+2}$-($\sqrt{3}$-1)0-$\sqrt{9-4\sqrt{5}}$;   
(2)lg$\frac{3}{7}$+lg70-lg3-$\sqrt{l{g}^{2}3-lg9+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,在定义域内既是奇函数又是增函数的为(  )
A.y=x+1B.y=log3|x|C.y=x3D.y=-$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)=(x-a)(x+3)为偶函数,则实数a等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)已知函数f(x)=|x-1|+|x-a|.若不等式f(x)≥a恒成立,求实数a的取值范围.
(2)如图,圆O的直径为AB且BE为圆O的切线,点C为圆O上不同于A、B的一点,AD为∠BAC的平分线,且分别与BC交于H,与圆O交于D,与BE交于E,连结BD、CD.
(Ⅰ)求证:∠DBE=∠DBC; 
(Ⅱ)若HE=4,求ED.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C:(x+3)2+(y-4)2=4.若直线l过点A(-1,0),且与圆C相切,求直线l的方程.

查看答案和解析>>

同步练习册答案