精英家教网 > 高中数学 > 题目详情

【题目】若数列与函数满足:①的任意两项均不相等,且的定义域为;②数列的前的项的和对任意的都成立,则称具有“共生关系”.

1)若,试写出一个与数列具有“共生关系”的函数的解析式;

2)若与数列具有“共生关系”,求实数对所构成的集合,并写出关于的表达式;

3)若,求证:“存在每项都是正数的无穷等差数列,使得具有‘共生关系’”的充要条件是“点在射线上”.

【答案】1 2)实数对所构成的集合为,且,其中. 3)证明见解析.

【解析】

(1),可知,从而可得.
(2) 由题意得,,可得,当时,与的任意两项均不相等相矛盾,故此时不合题意;当,不合题意,当,也不合题意.,则,由,可得的任意两项均不相等,故,可知,得出答案.
(3)先证必要性,若公差的等差数列,,可得,故解得,再证充分性,若点在射线上,

,可得,从而得证.

(1),可知

所以与数列具有“共生关系”的函数的解析式可以为:.

(2)由题意得,令,可得,即.

①若,此时不成立,不合题意,

,由,可得,又,可得,与的任意两项均不相等相矛盾,故此时不合题意.

②若,可得

,则由,可得,不合题意.

,则,当时,,不合题意.

,则,由

可得,即

此时数列是首项为,公比为的等比数列,又的任意两项均不相等,

,可知

所以实数对所构成的集合为,且,其中

(3)(必要性)公差的等差数列,且与具有“共生关系”.

则由

可得:

,即恒成立.

解得

又由,可得,

,可知

所以点在射线.

(充分性)若点在射线上,则

又方程等价于

,取,它显然是正数且满足

,则

故当时,

这里无穷数列是首项为,公差为的无穷等差数列.

其中每一项都是正数,所以存在每一项都是正数的无穷等差数列,使得具有“共生关系”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,菱形的边长为12交于点,将菱形沿对角线折起,得到三棱锥,点是棱的中点,

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔.令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部形为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为( )

A.128.5米B.132.5米C.136.5米D.110.5米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线过点,其参数方程为为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点是椭圆的中心,焦点与该椭圆的右焦点重合.

1)求抛物线的方程;

2)已知动直线过点,交抛物线两点,坐标原点的中点,求证

3)在(2)的条件下,是否存在垂直于轴的直线被以为直径的圆所截得的弦长恒为定值?如果存在,求出的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且它的一个焦点与抛物线的焦点相同.直线过点,且与椭圆相交于两点.

1)求椭圆的方程;

2)若直线的一个方向向量为,求的面积(其中为坐标原点);

3)试问:在轴上是否存在点,使得为定值?若存在,求出点的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的短轴长为2,离心率为,左顶点为A,过点A的直线lC交于另一个点M,且与直线xt交于点N

1)求椭圆C的方程;

2)是否存在实数t,使得为定值?若存在,求实数t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,其前n项和Sn满足4Snan2+2annN*.bn=(﹣1nanan+1Tn为数列{bn}的前n项和,则T2n_____.

查看答案和解析>>

同步练习册答案