精英家教网 > 高中数学 > 题目详情

 如图,已知正三棱柱的底面边长是是侧棱的中点,直线与侧面所成的角为

     (Ⅰ)求此正三棱柱的侧棱长;

(Ⅱ) 求二面角的大小;

(Ⅲ)求点到平面的距离.

(Ⅰ)此正三棱柱的侧棱长为.  …………………………5分

(Ⅱ)二面角的大小为  …………………………11分

(Ⅲ)


解析:

(Ⅰ)设正三棱柱的侧棱长为.取中点,连

是正三角形,.  …………………………2分

又底面侧面,且交线为侧面

,则直线与侧面所成的角为.   ……………………4分

中,,解得

此正三棱柱的侧棱长为.  …………………………5分

(Ⅱ)如图,建立空间直角坐标系

.  …………………………7分

为平面的法向量.

 得

                       …………………………9分

又平面的一个法向量 

结合图形可知,二面角的大小为  …………………………11分

(Ⅲ):由(Ⅱ)得  …………………………12分

到平面的距离

                                             …………………………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、如图,已知正三棱柱ABC-A1B1C1的底面边长为1,高为8,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为
10

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1(底面是正三角形,侧棱垂直底面)异面直线AC与B1C1所成的角是
60°
60°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1的各条棱长都为a,P为A1B上的点.
(1)试确定
A1P
PB
的值,使得PC⊥AB;
(2)若
A1P
PB
=
2
3
,求二面角P-AC-B的大小;
(3)在(2)的条件下,求C1到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城模拟)如图,已知正三棱柱ABC-A1B1C1中,D是BC的中点.
(1)求证:平面AB1D⊥平面B1BCC1
(2)求证:A1C∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淮安模拟)如图,已知正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点,试用空间向量知识解下列问题:
(1)求证:AB1⊥平面A1BD;
(2)求二面角A-A1D-B的余弦值大小.

查看答案和解析>>

同步练习册答案