精英家教网 > 高中数学 > 题目详情

已知函数,点A、B分别是函数图像上的最高点和最低点.
(1)求点A、B的坐标以及·的值;
(2)设点A、B分别在角的终边上,求tan()的值.

(1);(2).

解析试题分析:(1)根据的取值范围得到的取值范围,然后根据角的取值范围可以得到在该范围上的图像,结合三角函数的图像性质判断出最高点最低点,从而可以得到A,B的坐标,进而求得向量的数量积;(2)首先根据任意角的三角函数的定义可以求得,由倍角公式可以得到,再利用两角差的正切公式求的值.
(1)∵, ∴,     1分
.     2分
,即时,取得最大值2;
,即时,取得最小值-1. 
因此,点A、B的坐标分别是.            4分
.             5分
(2)∵点分别在角的终边上,
,                7分
,         8分
.                   10分   
考点:1、三角函数的最值;2、任意角的三角函数;3、两角差与倍角的正切公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的单调递增区间;
(2)若是第二象限角,,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,,),的部分图像如图所示,分别为该图像的最高点和最低点,点的坐标为
(1)求的最小正周期及的值;
(2)若点的坐标为,,求的值和的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,角和角的终边分别与单位圆交于两点,(其中为第一象限点,为第二象限点)

(1)若点的横坐标是,点的纵坐标是,求的值;
(2)若, 求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,而.
(1)若最大,求能取到的最小正数值.
(2)对(1)中的,若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数相邻两个对称轴之间的距离是,且满足,
(1)求的单调递减区间;
(2)在钝角△ABC中,a、b、c分别为角A、B、C的对边,sinB=,求△ABC的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数)为偶函数,且函数图象的两相邻对称轴间的距离为
(1)求的值;
(2)将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图象,求的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,点,其中.
(1)当时,求向量的坐标;
(2)当时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△中,是角对应的边,向量,,且
(1)求角
(2)函数的相邻两个极值的横坐标分别为,求的单调递减区间.

查看答案和解析>>

同步练习册答案