精英家教网 > 高中数学 > 题目详情
在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D、E、F分别是棱AB、BC、CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为(  )
A.              B.             C.             D.
C

试题分析:以A为坐标原点,建立如图空间直角坐标系易知:

A(0,0,0),B(1,0,0),P(0,0,2),
  

是平面DEF的一个法向量,
,取x=1, 则
设PA与平面 DEF所成的角为
则 sinθ=
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则简化了证明过程。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

以下五个命题中,正确命题的个数是________.
① 不共面的四点中,其中任意三点不共线;
② 若
③ 对于四面体ABCD,任何三个面的面积之和都大于第四个面的面积;
④ 对于四面体ABCD,相对棱AB CD 所在的直线是异面直线;
⑤ 各个面都是三角形的几何体是三棱锥。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①如果是两条直线,且//,那么平行于经过的任何平面;
②如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面
③若直线是异面直线,直线是异面直线,则直线也是异面直线;
④已知平面⊥平面,且,若,则⊥平面
⑤已知直线⊥平面,直线在平面内,//,则.
其中正确命题的序号是     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间中,设是三条不同的直线,是两个不同的平面,在下列命题:
①若两两相交,则确定一个平面
②若,且,则
③若,且,则
④若,且,则
其中正确的命题的个数是(   )
A.0B.1 C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,

(1)线段的中点为,线段的中点为,求证:
(2)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果一条直线和平面内的一条直线平行,那么直线和平面的关系是         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知点B在以AC为直径的圆上,SA⊥面ABCAESBEAFSCF.

(I)证明:SCEF
(II)若求三棱锥SAEF的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
四棱锥,面⊥面.侧面是以为直角顶点的等腰直角三角形,底面为直角梯形,,,上一点,且.

(Ⅰ)求证
(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)三棱锥中,

(Ⅰ)求证:平面平面
(Ⅱ)当时,求三棱锥的体积.

查看答案和解析>>

同步练习册答案