精英家教网 > 高中数学 > 题目详情
14.复数z=$\frac{4+3i}{1+2i}$的虚部为(  )
A.iB.-iC.-1D.1

分析 直接由复数代数形式的乘除运算化简复数z,则答案可求.

解答 解:z=$\frac{4+3i}{1+2i}$=$\frac{(4+3i)(1-2i)}{(1+2i)(1-2i)}=\frac{10-5i}{5}=2-i$,
则复数z=$\frac{4+3i}{1+2i}$的虚部为:-1.
故选:C.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=cos2ωx-sin2ωx+2$\sqrt{3}$cosωx•sinωx,其中ω>0,若f(x)相邻两条对称轴间的距离不小于$\frac{π}{2}$
(1)求ω的取值范围及函数f(x)的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,a=$\sqrt{3}$,b+c=3,当ω最大时,f(A)=1,求sinB•sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.三棱柱ABC-A1B1C1中,△ABC是等边三角形,AA1⊥底面ABC,AB=2,AA1=$\sqrt{2}$,则异面直线AC1与B1C所成的角的大小是(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:

由于这些数能够表示成三角形将其称为三角形数,记第n个三角形数为an(如a4=10),令S=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2016}}$,则S=(  )
A.$\frac{2016}{2017}$B.$\frac{4032}{2017}$C.$\frac{2015}{2016}$D.$\frac{4030}{2016}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知两点F1(-1,0),F(1,0),且|F1F2|是|PF1|与|PF2|的等差数列中项,则动点P所形成的轨迹的离心率是(  )
A.$\frac{\sqrt{7}}{4}$B.2C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则坐标原点O与圆(x-$\sqrt{a}$)2+(y+$\sqrt{b}$)2=2的位置关系是(  )
A.点O在圆外B.点O在圆上C.点O在圆内D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,第n个三角形数为$\frac{{n({n+1})}}{2}=\frac{1}{2}{n^2}+\frac{1}{2}$n.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:
三角形数     N(n,3)=$\frac{1}{2}{n^2}+\frac{1}{2}$n
正方形数      N(n,4)=n2
五边形数      N(n,5)=$\frac{3}{2}{n^2}-\frac{1}{2}$n
六边形数      N(n,6)=2n2-n
可以推测N(n,k)的表达式,由此计算N(10,24)=1000.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,矩形BDEF垂直于正方形ABCD,GC垂直于平面ABCD,且AB=DE,CG=$\frac{1}{2}$DE.
(1)证明:面GEF⊥面AEF;
(2)求二面角B-EG-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3,设a>-1,且当x∈[-$\frac{a}{2}$,$\frac{1}{2}$]时,f(x)≤g(x),则a的取值范围是(-1,$\frac{4}{3}$].

查看答案和解析>>

同步练习册答案