精英家教网 > 高中数学 > 题目详情

【题目】已知动圆过定点P(4,0),且在y轴上截得的弦MN的长为8.

(1)求动圆圆心C的轨迹方程;

(2)过点(2,0)的直线l与动圆圆心C的轨迹交于A,B两点,求证:是一个定值.

【答案】(1);(2)见解析

【解析】

(1)设圆心的坐标为,得出,代入点的坐标,即可得到曲线C的轨迹方程;

(2)设直线方程,联立方程组,得到,再向量的数量积的运算,即可得到结论.

(1)设动圆的圆心C(x,y),线段MN的中点为T,则|MT|==4.

由题意得|CP|2=|CM|2=|MT|2+|TC|2,∴y2+(x-4)2=42+x2,∴y2=8x,

即动圆圆心C的轨迹方程为y2=8x.

(2)证明:易知直线l的斜率不为0,

设直线l的方程为x=ky+2,A(x1,y1),B(x2,y2).

联立消去x整理得y2-8ky-16=0,Δ=64k2+64>0,可得y1+y2=8k,y1y2=-16.

=(x1,y1),=(x2,y2),

·=x1x2+y1y2=(ky1+2)(ky2+2)+y1y2=k2y1y2+2k(y1+y2)+4+y1y2=-16k2+16k2+4-16=-12,

·是一个定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某个体服装店经营某种服装,该服装店每天所获利润y(元)与每天售出这种服装件数x之间的一组数据关系如下表:

x

3

4

5

6

7

8

9

y

66

69

74

81

89

90

91

(1)求利润y与每天售出件数x之间的回归方程 (回归直线的斜率用分数表示).

(2)若该服装店某天销售服装13件,估计可获利润多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,江的两岸可近似的看成两平行的直线,江岸的一侧有A,B两个蔬菜基地,江的另一侧点C处有一个超市.已知A、B、C中任意两点间的距离为20千米.超市欲在AB之间建一个运输中转站D,A,B两处的蔬菜运抵D处后,再统一经过货轮运抵C处.由于A,B两处蔬菜的差异,这两处的运输费用也不同.如果从A处出发的运输费为每千米2元,从B处出发的运输费为每千米1元,货轮的运输费为每千米3元.

(1)设∠ADC=α,试将运输总费用S(单位:元)表示为α的函数S(α),并写出自变量的取值范围;
(2)问中转站D建在何处时,运输总费用S最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,设直线过点A( ),B(3, ),且直线与曲线C:ρ=2rsinθ(r>0)有且只有一个公共点,求实数r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知恒等式(1+x+x2n=a0+a1x+a2x2+…+a2nx2n
(1)求a1+a2+a3+…+a2n和a2+2a3+22a4+…+22n2a2n的值;
(2)当n≥6时,求证: a2+2A a3+…+22n2 a2n<49n2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥平面PAD,AB∥CD,CD=2AB=2BC,M,N分别是棱PA,CD的中点.

(1)求证:PC∥平面BMN;
(2)求证:平面BMN⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=xex﹣asinxcosx(a∈R,其中e是自然对数的底数).
(1)当a=0时,求f(x)的极值;
(2)若对于任意的x∈[0, ],f(x)≥0恒成立,求a的取值范围;
(3)是否存在实数a,使得函数f(x)在区间 上有两个零点?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是公差为正数的等差数列,其前项和为

(1)求数列的通项公式.

(2)设数列满足

①求数列的通项公式;

②是否存在正整数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数,函数 ,若对所有的总存在,使得成立,则实数的取值范围是__________

查看答案和解析>>

同步练习册答案