精英家教网 > 高中数学 > 题目详情

【题目】设某校新、老校区之间开车单程所需时间为只与道路畅通状况有关,对其容量为的样本进行统计,结果如图:

(分钟)

25

30

35

40

频数(次)

20

30

40

10

1)求的分布列与数学期望

2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.

【答案】()分布列见解析, ;(

【解析】试题分析:(1)先算出的频率分布,进而可得的分布列,再利用数学期望公式可得数学期望;(2)先设事件表示刘教授从离开老校区到返回老校区共用时间不超过分钟,再算出的概率.

试题解析:(1)由统计结果可得T的频率分步为

(分钟)

25

30

35

40

频率

02

03

04

01

以频率估计概率得T的分布列为


25

30

35

40


02

03

04

01

从而(分钟).

2)设分别表示往、返所需时间, 的取值相互独立,且与T的分布列相同.设事件A表示刘教授共用时间不超过120分钟,由于讲座时间为50分钟,所以事件A对应于刘教授在途中的时间不超过70分钟

解法一:

解法二:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三条直线l1:4xy-4=0,l2mxy=0,l3:2x-3my-4=0.

(1)若直线l1l2l3交于一点,求实数m的值;

(2)若直线l1l2l3不能围成三角形,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间内)中,按照5%的比例进行分层抽样,统计结果按 分组,整理如下图:

(Ⅰ)写出频率分布直方图(图乙)中的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为 ,试比较的大小(只需写出结论);

(Ⅱ)从甲种酸奶日销售量在区间的数据样本中抽取3个,记在内的数据个数为,求的分布列;

(Ⅲ)估计1200个日销售量数据中,数据在区间中的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行的三色球购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:

奖级

摸出红、蓝球个数

获奖金额

一等奖

31

200

二等奖

30

50

三等奖

21

10

其余情况无奖且每次摸奖最多只能获得一个奖级.

1求一次摸奖恰好摸到1个红球的概率;

2求摸奖者在一次摸奖中获奖金额X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】乔经理到老陈的果园里一次性采购一种水果,他俩商定:乔经理的采购价(元/吨)与采购量(吨)之间函数关系的图像如图中的折线段所示(不包含端点但包含端点).

(1)求之间的函数关系式;

(2)已知老陈种植水果的成本是2800元/吨,那么乔经理的采购量为多少时,老陈在这次买卖中所获的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面为正三角形,,点分别为线段的中点,分别为线段上一点,且.

(1)确定点的位置,使得平面

(2)试问:直线上是否存在一点,使得平面与平面所成锐二面角的大小为,若存在,求的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 (为实数).

(1)若,求证:函数上是增函数;

(2)求函数上的最小值及相应的的值;

(3)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的定义域;

(2)判定函数的单调性,并证明你的结论;

(3)若当时, 恒成立,求正整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某居民区的物业部门每月向居民收取卫生费,计费方法如下:3人和3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,计算应收取的卫生费,并画出程序框图.

查看答案和解析>>

同步练习册答案