【题目】设某校新、老校区之间开车单程所需时间为, 只与道路畅通状况有关,对其容量为的样本进行统计,结果如图:
(分钟) | 25 | 30 | 35 | 40 |
频数(次) | 20 | 30 | 40 | 10 |
(1)求的分布列与数学期望;
(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.
【答案】(Ⅰ)分布列见解析, ;(Ⅱ).
【解析】试题分析:(1)先算出的频率分布,进而可得的分布列,再利用数学期望公式可得数学期望;(2)先设事件表示“刘教授从离开老校区到返回老校区共用时间不超过分钟”,再算出的概率.
试题解析:(1)由统计结果可得T的频率分步为
(分钟) | 25 | 30 | 35 | 40 |
频率 | 0.2 | 0.3 | 0.4 | 0.1 |
以频率估计概率得T的分布列为
25 | 30 | 35 | 40 | |
0.2 | 0.3 | 0.4 | 0.1 |
从而(分钟).
(2)设分别表示往、返所需时间, 的取值相互独立,且与T的分布列相同.设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在途中的时间不超过70分钟”.
解法一:
.
解法二:
故.
科目:高中数学 来源: 题型:
【题目】已知三条直线l1:4x+y-4=0,l2:mx+y=0,l3:2x-3my-4=0.
(1)若直线l1,l2,l3交于一点,求实数m的值;
(2)若直线l1,l2,l3不能围成三角形,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间内)中,按照5%的比例进行分层抽样,统计结果按, , , , 分组,整理如下图:
(Ⅰ)写出频率分布直方图(图乙)中的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为, ,试比较与的大小(只需写出结论);
(Ⅱ)从甲种酸奶日销售量在区间的数据样本中抽取3个,记在内的数据个数为,求的分布列;
(Ⅲ)估计1200个日销售量数据中,数据在区间中的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:
奖级 | 摸出红、蓝球个数 | 获奖金额 |
一等奖 | 3红1蓝 | 200元 |
二等奖 | 3红0蓝 | 50元 |
三等奖 | 2红1蓝 | 10元 |
其余情况无奖且每次摸奖最多只能获得一个奖级.
(1)求一次摸奖恰好摸到1个红球的概率;
(2)求摸奖者在一次摸奖中获奖金额X的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】乔经理到老陈的果园里一次性采购一种水果,他俩商定:乔经理的采购价(元/吨)与采购量(吨)之间函数关系的图像如图中的折线段所示(不包含端点但包含端点).
(1)求与之间的函数关系式;
(2)已知老陈种植水果的成本是2800元/吨,那么乔经理的采购量为多少时,老陈在这次买卖中所获的利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧面底面,为正三角形,,,点,分别为线段、的中点,、分别为线段、上一点,且,.
(1)确定点的位置,使得平面;
(2)试问:直线上是否存在一点,使得平面与平面所成锐二面角的大小为,若存在,求的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某居民区的物业部门每月向居民收取卫生费,计费方法如下:3人和3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,计算应收取的卫生费,并画出程序框图.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com