【题目】已知实数x,y满足,则的取值范围是__________.
【答案】
【解析】
变形可得(x﹣2)2+y2=1,所求式子表示圆上的点M(x,y)与定点A(1,﹣3)连线的斜率k加上1,利用直线和圆相切的性质求得k的范围,可得结论.
解:∵实数x,y满足x2﹣4x+3+y2=0,即(x﹣2)2+y2=1,表示以C(2,0)为圆心,半径等于1的圆.
则1,表示圆上的点M(x,y)与定点A(1,﹣3)连线的斜率k加上1,如图.
当切线位于AB这个位置时,k最小,k+1最小.
当切线位于AE这个位置时,k不存在,k+1不存在.
设AB的方程为y+3=k(x﹣1),即 kx﹣y﹣k﹣3=0,由CB=1,可得1,求得k.
而AE的方程为x=1,
故k+1的范围为[,+∞),
故答案为:[,+∞).
科目:高中数学 来源: 题型:
【题目】在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各种开支2 000元.
(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;
(2)企业乙只依靠该店,最早可望在几年后脱贫?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设椭圆 (a>b>0)的左、右焦点分别为F1 , F2 , 点D在椭圆上.DF1⊥F1F2 , =2 ,△DF1F2的面积为 .
(1)求椭圆的标准方程;
(2)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com