精英家教网 > 高中数学 > 题目详情

【题目】已知实数x,y满足,则的取值范围是__________.

【答案】

【解析】

变形可得(x22+y21,所求式子表示圆上的点Mxy)与定点A1,﹣3)连线的斜率k加上1,利用直线和圆相切的性质求得k的范围,可得结论.

解:∵实数xy满足x24x+3+y20,即(x22+y21,表示以C20)为圆心,半径等于1的圆.

1,表示圆上的点Mxy)与定点A1,﹣3)连线的斜率k加上1,如图.

当切线位于AB这个位置时,k最小,k+1最小.

当切线位于AE这个位置时,k不存在,k+1不存在.

AB的方程为y+3kx1),即 kxyk30,由CB1,可得1,求得k

AE的方程为x1

k+1的范围为[+∞),

故答案为:[+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是奇函数,则①一定是偶函数;②一定是偶函数;③;④.其中正确的是( )

A. ①② B. ③④ C. ①③ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

若函数,求上的最小值;

记函数,若函数上有两个零点,求实数a的取值范围,并证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别是a,b,c,且cosC+=1.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数.

(Ⅰ)若函数上存在零点,求实数的取值范围;

(Ⅱ)若函数处的切线方程为.求证:对任意的,总有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=+,其中a>0且a≠1。

(1)求函数的定义域;

(2)若函数有最小值而无最大值,求的单调增区间。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:这种消费品的进价为每件14元;该店月销量Q(百件)与销售价格P(元)的关系如图所示;每月需各种开支2 000.

1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;

2)企业乙只依靠该店,最早可望在几年后脱贫?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=x﹣(a+1)lnx﹣ , 求函数h(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 (a>b>0)的左、右焦点分别为F1 , F2 , 点D在椭圆上.DF1⊥F1F2 =2 ,△DF1F2的面积为

(1)求椭圆的标准方程;
(2)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.

查看答案和解析>>

同步练习册答案