精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,∠BAC=90°,AC=2AB,PA垂直△ABC所在的平面,PC与△ABC所在的平面成30°角,点D在线段PC上,点E在线段BC上.
(Ⅰ)若AD⊥PC,求证:BD⊥PC;
(Ⅱ)若PD:PC=1:4,EC:BC=1:4,求二面角B-AD-E的余弦值.
考点:与二面角有关的立体几何综合题
专题:空间位置关系与距离
分析:(Ⅰ)由已知条件推导出PA⊥AB,AB⊥PC,由此能够证明PC⊥面ABD,从而得到BD⊥PC.
(Ⅱ)由题意分别以AB,AC,AP为轴建立空间直角坐标系,利用向量法能求出二面角B-AD-E的余弦值.
解答: (Ⅰ)证明:∵∠BAC=90°,∴AB⊥AC,
又∵PA⊥平面ABC,∴PA⊥AB,
又∵AB∩AC=A,∴AB⊥面PAC,∴AB⊥PC,
∵AD⊥PC,AB∩AD=A,∴PC⊥面ABD,
∴BD⊥PC.
(Ⅱ)解:由题意分别以AB,AC,AP为轴建立空间直角坐标系,
令AC=2AB=2,则由已知条件得:
A(0,0,0),B(1,0,0),C(0,2,0),
P(0,0,
2
3
),D(0,
1
2
3
2
),E(
1
4
3
2
,0
),
AB
=(1,0,0),
AD
=(0,
1
2
3
2
)
AE
=(
1
4
3
2
,0)

设平面ABD的一个法向量
n
=(x,y,z)

n
AB
=0
n
AD
=0

x=0
1
2
y+
3
2
z=0

取y=
3
,得z=-1,
n
=(0,
3
,-1)

设平面ADE的法向量
m
=(x1y1z1)
,则
m
AD
=0
m
AE
=0

1
2
y2+
3
2
z2=0
1
4
x2+
3
2
y2=0
,取x2=-6
3
,得y2=
3
,z2=-1,
m
=(-6
3
3
,-1),
∵cos<
m
n
>=
0×6
3
+
3
×
3
+(-1)×(-1)
2×4
7
=
7
14

∴二面角B-AD-E的余弦值为
7
14
点评:本题考查异面直线垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=
1
2
+
1
6
+
1
12
+…+
1
n(n+1)
, 且 SnSn+1=
3
4
,则n的值为(  )
A、9B、8C、7D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

对具有线性相关关系的变量x,y,测得一组数据如下表:
x 2 4 5 6 8
y 20 40 60 70 80
参考公式:b=
R
i=1
x2y2-n
.
x
.
y
n
i=1
x
2
i
-n
.
x2
根据上表,利用最小二乘法得它们的回归直线方程为 
y
=bx+1.5,据此模型来预测当x=20时,y的估计值为(  )
A、210.5B、212.5
C、210D、211.5

查看答案和解析>>

科目:高中数学 来源: 题型:

某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组得到的频率分布表如下:
组号 分组 频数 频率
第一组 [160,165) 5 0.050
第二组 [165,170) a 0.350
第三组 [170,175) 30 b
第四组 [175,180) c 0.200
第五组 [180,185] 10 0.100
合计 100 1.00
(1)为了能选拔出优秀的学生,高校决定在笔试成绩高的第三、四、五组中用分层抽样法抽取6名学生进入第二轮面试,试确定a,b,c的值并求第三、四、五组每组各抽取多少名学生进入第二轮面试;
(2)在(1)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组中至少有一名学生被A考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知AB=10,AC=14,B=
π
3
,D是BC边上的一点,DC=6.
(Ⅰ)求∠ADB的值;
(Ⅱ)求sin∠DAC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中an+1=2an+2n+1(n∈N*),a1=2,
(1)求证:数列{
an
2n
}是等差数列,并求数列{an}的通项公式;
(2)求数列{an}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{3n-1an}的前n项和为Sn,且Sn=
n
3
,a∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
n
an
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①“若x2+y2≠0,则x,y不全为零”的否命题;
②“若m>0,则x2+x-m=0有实根”的逆否命题;
③若过定点M(-1,0)且斜率为k的直线与圆x2+4x+y2-5=0在第一象限内的部分有交点,则k的取值范围是0≤k≤
5

④已知二面角α-l-β的平面角的大小是60°,P∈α,Q∈β,R是直线l上的任意一点,过点P与Q作直线l的垂线,垂足分别为P1,Q1,且|PP1|=2,|QQ1|=3,|P1Q1|=5,则|PR|+|QR|的最小值为5
2

以上命题正确的为
 
(把所有正确的命题序号写在答题卷上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
100
+
y2
25
=1的上顶点为A,直线y=-4交椭圆E于点B,C(点B在点C的左侧),点P在椭圆E上.
(Ⅰ)求以原点为顶点,椭圆的右焦点为焦点的抛物线的方程;
(Ⅱ)若四边形ABCD为梯形,求点P的坐标;
(Ⅲ)若
BP
=m•
BA
+n•
BC
(m,n为实数),求m+n的最大值及对应的P的坐标.

查看答案和解析>>

同步练习册答案