精英家教网 > 高中数学 > 题目详情

【题目】如图,设圆弧x2+y2=1(x≥0,y≥0)与两坐标轴正半轴围成的扇形区域为M,过圆弧上中点A做该圆的切线与两坐标轴正半轴围成的三角形区域为N.现随机在区域N内投一点B,若设点B落在区域M内的概率为P,则P的值为(  )

A.
B.
C.
D.

【答案】B
【解析】解:∵A是圆弧上的中点,
∴A(1,1),
则OA的斜率为k=1,
则过A的直线方程为y﹣1=﹣(x﹣1),即y=﹣x+2,
则直线y=﹣x+2与坐标轴的交点为(2,0),(0,2)对应三角形的面积S=x2x2=2,
M的面积S=
则点B落在区域M内的概率为P=
故选:B
【考点精析】本题主要考查了几何概型的相关知识点,需要掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a10=30,a20=50.
(1)求通项公式;
(2)若Sn=242,求项数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx﹣x2 , a∈R,
(1)求函数f(x)的单调区间;
(2)若x≥1时,f(x)≤0恒成立,求实数a的取值范围;
(3)设a>0,若A(x1 , y1),B(x2 , y2)为曲线y=f(x)上的两个不同点,满足0<x1<x2 , 且x3
(x1 , x2),使得曲线y=f(x)在x=x3处的切线与直线AB平行,求证:x3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2+Dx+Ey+3=0,圆C关于直线x+y﹣1=0对称,圆心在第二象限,半径为
(1)求圆C的方程;
(2)已知不过原点的直线l与圆C相切,且与x轴、y轴上的截距相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= ,AF=1,M是线段EF的中点.

(1)求证:AM∥平面BDE;
(2)求证:AM⊥平面BDF;
(3)求A点到面BDF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【南通市、泰州市2017届高三第一次调研测试】(本题满分16分)如图,某机械厂要将长6m,宽2m的长方形铁皮ABCD进行裁剪。已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC于点P),再沿直线PE裁剪。

(1)当时,试判断四边形MNPE的形状,并求其面积;

(2)若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形ABCD,AB=1,BC= . 将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中(  )
A.存在某个位置,使得直线AC与直线BD垂直
B.存在某个位置,使得直线AB与直线CD垂直
C.存在某个位置,使得直线AD与直线BC垂直
D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017黑龙江大庆实验中学仿真模拟如图,在四棱锥P—ABCD中,平面PAD⊥底面ABCD,其中底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2,PA⊥PD,Q为PD的中点.

(Ⅰ)证明:CQ∥平面PAB;

(Ⅱ)求直线PD与平面AQC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2x+a
(1)当 时,求不等式f(x)>1的解集;
(2)若对于任意x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案