精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: =1(a>b>0)的上顶点为(0,2),且离心率为 . (Ⅰ)求椭圆C的方程;
(Ⅱ)从椭圆C上一点M向圆x2+y2=1上引两条切线,切点分别为A、B,当直线AB分别与x轴、y轴交于P、Q两点时,求|PQ|的最小值.

【答案】解:(Ⅰ)∵椭圆C: =1(a>b>0)的上顶点为(0,2),且离心率为 , ∴ ,解得a=6,b=2,
∴椭圆C的方程为
(Ⅱ)设切点为(x0 , y0),
当切线斜率存在时,设切线方程为y﹣y0=k(x﹣x0),
∵k=﹣ ,∴切线方程为y﹣y0=﹣ (x﹣x0),∴
当k不存在时,切点坐标为(±r,0),对应切线方程为x=±r,
符合
综上知切线方程为
设点M(xM , yM),MA,MB是圆x2+y2=1的切线,切点A(x1 , y1),B(x2 , y2),
过点A的圆的切线为x1x+y1y=1,
过点B的圆的切线为x2x+y2y=1,
∵两切线都过M点,∴x1xM+y1yM=1,x2xM+y2yM=1,
∴切点弦AB的方程为xMx+yMy=1,
由题意知xMyM≠0,
∴P( ,0),Q(0, ),
∴|PQ|2= =( )( +
=
=
当且仅当 时,取等号,
∴|PQ|≥ ,∴|PQ|的最小值为
【解析】(Ⅰ)由椭圆上顶点为(0,2),且离心率为 ,列出方程组,求出a=6,b=3,由此能求出椭圆C的方程.(Ⅱ)设切点为(x0 , y0),求出切线方程为 ,设点M(xM , yM),MA,MB是圆x2+y2=1的切线,求出切点弦AB的方程为xMx+yMy=1,由此能求出|PQ|的最小值.
【考点精析】本题主要考查了椭圆的标准方程的相关知识点,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}为单调递减的等差数列,a1+a2+a3=21,且a1﹣1,a2﹣3,a3﹣3成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=|an|,求数列{bn}的前项n和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的动点.若CE∥平面PAB,则三棱锥C﹣ABE的体积为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知倾斜角60°为的直线l平分圆:x2+y2+2x+4y﹣4=0,则直线l的方程为(
A. x﹣y+ +2=0
B. x+y+ +2=0
C. x﹣y+ ﹣2=0
D. x﹣y﹣ +2=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +
(1)求f(x)的定义域A;
(2)若函数g(x)=x2+ax+b的零点为﹣1.5,当x∈A时,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在直线x+y﹣1=0上且过点A(2,2)的圆C1与直线3x﹣4y+5=0相切,其半径小于5.
(1)若C2圆与圆C1关于直线x﹣y=0对称,求圆C2的方程;
(2)过直线y=2x﹣6上一点P作圆C2的切线PC,PD,切点为C,D,当四边形PCC2D面积最小时,求直线CD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,﹣2),椭圆E: =1(a>b>0)的离心率为 ,F是椭圆E的右焦点,直线AF的斜率为 ,O为坐标原点
(1)求E的方程
(2)设过点A的动直线l与E相交于P,Q两点,问:是否存在直线l,使以PQ为直径的圆经过点原点O,若存在,求出对应直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是(
A.奇函数f(x)的图象经过(0,0)点
B.y=|x+1|+|x﹣1|(x∈(﹣4,4])是偶函数
C.幂函数y=x 过(1,1)点
D.y=sin2x(x∈[0,5π])是以π为周期的函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知R(x0 , y0)是椭圆C: =1上的一点,从原点O向圆R:(x﹣x02+(y﹣y02=8作两条切线,分别交椭圆于点P,Q.
(1)若R点在第一象限,且直线OP,OQ互相垂直,求圆R的方程;
(2)若直线OP,OQ的斜率存在,并记为k1 , k2 , 求k1k2的值;
(3)试问OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

同步练习册答案