精英家教网 > 高中数学 > 题目详情
2.偶函数f(x)满足f(x)=f(2-x),且当x∈[-1,0]时,f(x)=cos$\frac{πx}{2}$-1,若函数g(x)=f(x)-logax有且仅有三个零点,则实数a的取值范围是($\frac{1}{5}$,$\frac{1}{3}$).

分析 由题意可得,函数f(x)的图象既关于y轴对称又关于x=1对称,函数f(x)是周期为2,函数y=f(x)的图象和函数y=logax有的图象有且仅有3个交点,数形结合可得$\left\{\begin{array}{l}{0<a<1}\\{lo{{g}_{a}}^{3}>-1}\\{lo{{g}_{a}}^{5}<-1}\end{array}\right.$,由此求得a的范围.

解答 解:∵偶函数f(x)满足f(x)=f(2-x),
∴函数的图象既关于y轴对称又关于x=1对称,
∴函数f(x)是周期为2.
由当x∈[-1,0]时,f(x)=cos$\frac{πx}{2}$-1,
可得函数f(x)的图象,如图所示:
由题意可得,函数y=f(x)的图象和函数y=logax有的图象有且仅有3个交点,
故有$\left\{\begin{array}{l}{0<a<1}\\{lo{{g}_{a}}^{3}>-1}\\{lo{{g}_{a}}^{5}<-1}\end{array}\right.$,
求得$\frac{1}{5}$<a<$\frac{1}{3}$,
即a的取值范围为($\frac{1}{5}$,$\frac{1}{3}$).
故答案是:($\frac{1}{5}$,$\frac{1}{3}$).

点评 本题主要考查方程根的存在性以及个数判断,体现了转化、数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知sinx-cosx=-$\frac{1}{3}$,x∈(0,π),则sinx+cosx=$\frac{\sqrt{17}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知公比为q的等比数列{an}的前6项和S6=21,且4a1,3a2,2a3成等差数列.
(1)求an
(2)设{bn}是首项为2,公差为-a1的等差数列,其前n项和为Tn,求不等式Tn-bn>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{u}$=3x$\overline{a}$+(3x-1)$\overrightarrow{b}$,$\overrightarrow{v}$=3$\overrightarrow{a}$+2x$\overrightarrow{b}$,若$\overrightarrow{u}$∥$\overrightarrow{v}$,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.利用函数的性质比较:2${\;}^{\frac{1}{2}}$,3${\;}^{\frac{1}{3}}$,6${\;}^{\frac{1}{6}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(平行班做) 已知函数f(x)=$\sqrt{3}$sin2x+2cos2x.
(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程
(Ⅱ)求函数f(x)在区间[-$\frac{π}{12}$,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,k为何值时,向量$\overrightarrow{a}$+k$\overrightarrow{b}$与$\overrightarrow{a}$-k$\overrightarrow{b}$平行.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设A={x|x2-5x<6},B={x|x-a<0}.
(1)若A∩B=∅,求实数a的取值范围;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.解不等式:(x-1)(x+1)(x+2)≤0.

查看答案和解析>>

同步练习册答案