精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,平面平面.

(1)求棱锥的体积;

(2)求证:平面平面

(3)在线段上是否存在一点,使平面?若存在,求出的值;若不存在,说明理由.

【答案】1

2)见试题解析;

3)在线段上存在一点,且,使平面

【解析】

试题(I)在在中,,可得,由于平面,可的棱锥的高,利用体积公式求解几何体的体积;(II)由平面,可得,进而得到平面,即可证明平面 平面;(III)在线段上存在一点,使得平面,设F为线段DE上的一点,且,过F,由线面垂直的性质可得,可得四边形ABMF是平行四边形,于是,即可证明平面

试题解析:()在中,

因为平面

所以棱锥的体积为

)证明:因为平面平面

所以.又因为

所以平面.又因为平面

所以平面 平面

)结论:在线段上存在一点,且

使平面

解:设为线段上一点, 且, 过点

.因为平面平面,所以

又因为所以,所以四边形是平行四边形,

.又因为平面平面,所以平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效的改良玉米品种,为农民提供技术支.现对已选出的一组玉米的茎高进行统计,获得茎叶图如右图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.

1)完成列联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?

2①按照分层抽样的方式,在上述样本中,从易倒伏和抗倒伏两组中抽取9株玉米,设取出的易倒伏矮茎玉米株数为,求的分布列(概率用组合数算式表示);

②若将频率视为概率,从抗倒伏的玉米试验田中再随机抽取出50株,求取出的高茎玉米株数的数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修:坐标系与参数方程

在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系.曲线的极坐标方程为

(1)写出的普通方程和的直角坐标方程;

(2)设点上,点上,求的最小值及此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场在五一促销活动中,为了了解消费额在5千元以下(含5千元)的顾客的消费分布情况,从这些顾客中随机抽取了100位顾客的消费数据(单位:千元),按分成5组,制成了如图所示的频率分布直方图现采用分层抽样的方法从两组顾客中抽取4人进行满意度调查,再从这4人中随机抽取2人作为幸运顾客,求所抽取的2位幸运顾客都来自组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若 ,求的值;

(Ⅱ)讨论函数的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中.

(1)当时,求函数单调递增区间;

(2)求证:对任意,函数的图象在点处的切线恒过定点;

(3)是否存在实数的值,使得上有最大值或最小值,若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实验杯足球赛采用七人制淘汰赛规则,某场比赛中一班与二班在常规时间内战平,直接进入点球决胜环节,在点球决胜环节中,双方首先轮流罚点球三轮,罚中更多点球的球队获胜;若双方在三轮罚球中未分胜负,则需要进行一对一的点球决胜,即双方各派处一名队员罚点球,直至分出胜负;在前三轮罚球中,若某一时刻胜负已分,尚未出场的队员无需出场罚球(例如一班在先罚球的情况下,一班前两轮均命中,二班前两轮未能命中,则一班、二班的第三位同学无需出场).由于一班同学平时踢球热情较高,每位队员罚点球的命中率都能达到0.8,而二班队员的点球命中串只有0.5,比赛时通过抽签决定一班在每一轮都先罚球.

(1)定义事件为“一班第三位同学没能出场罚球”,求事件发生的概率;

(2)若两队在前三轮点球结束后打平,则进入一对一点球决胜,一对一球决胜由没有在之前点球大战中出场过的队员主罚点球,若在一对一点球决胜的某一轮中,某对队员射入点球且另一队员未能射入,则比赛结束;若两名队员均射入或者均射失点球,则进行下一轮比赛. 若直至双方场上每名队员都已经出场罚球,则比赛亦结束,双方通过抽签决定胜负,本场比赛中若已知双方在点球大战,以随机变量记录双方进行一对一点球决胜的轮数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 的导函数.

Ⅰ)求的极值;

Ⅱ)若时恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在平面直角坐标系中,曲线的参数方程为为参数,),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,直线的极坐标方程为.

(1)设是曲线上的一个动眯,当时,求点到直线的距离的最小值;

(2)若曲线上所有的点都在直线的右下方,求实数的取值范围.

查看答案和解析>>

同步练习册答案