精英家教网 > 高中数学 > 题目详情

下表是对某市8所中学学生是否吸烟进行调查所得的结果:

 
吸烟学生
不吸烟学生
父母中至少有一人吸烟
816
3 203
父母均不吸烟
188
1 168
(1)在父母至少有一人吸烟的学生中,估计吸烟学生所占的百分比是多少?
(2)在父母均不吸烟的学生中,估计吸烟学生所占的百分比是多少?
(3)学生的吸烟习惯和父母是否吸烟有关吗?请简要说明理由.
(4)有多大的把握认为学生的吸烟习惯和父母是否吸烟有关?

(1)20.3%  (2)13.86%  (3)有关,理由见解析  (4)有99.9%以上的把握认为学生的吸烟习惯和父母是否吸烟有关.

解析解:(1)×100%≈20.3%.
(2)×100%≈13.86%.
(3)有关,因为父母吸烟与不吸烟,其子女吸烟的比例有较大的差异.
(4)提出假设H0:学生的吸烟习惯和父母是否吸烟无关.根据列联表中的数据可以求得χ2≈27.677>10.828.因为当H0成立时,P(χ2>10.828)≈0.001,所以我们有99.9%以上的把握认为学生的吸烟习惯和父母是否吸烟有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,其可见部分如下,据此解答如下问题:
 
(1)计算频率分布直方图中[80,90)间的矩形的高;
(2)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份试卷的分数在之间的概率;
(3)根据频率分布直方图估计这次测试的平均成绩.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了调查某厂2000名工人生产某种产品的能力,随机抽查了位工人某天生产该产品的数量,产品数量的分组区间为,得到如题(16)图所示的频率分布直方图。已知生产的产品数量在之间的工人有6位.
(1)求
(2)工厂规定从生产低于20件产品的工人中随机的选取2位工人进行培训,求这2位工人不在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在电阻碳含量对于电阻的效应研究中,得到如下表所示的数据:

含碳量
(x/%)
0.10
0.30
0.40
0.55
0.70
0.80
0.95
20 ℃时电阻
(y/Ω)
15
18
19
21
22.6
23.8
26
(1)求出y与x的相关系数并判断相关性;
(2)求出电阻y关于含碳量x之间的回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某校学生参加某项测试的情况,从该校学生中随机抽取了6位同学,这6位同学的成绩(分数)如茎叶图所示.

⑴求这6位同学成绩的平均数和标准差;
⑵从这6位同学中随机选出两位同学来分析成绩的分布情况,设为这两位同学中成绩低于平均分的人数,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:

其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,-1代表“生活不能自理”。
(1)随机访问该小区一位80岁以下的老龄人,该老人生活能够自理的概率是多少?
(2)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求.某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟):

组别
候车时间
人数

 
2


6


4


2


1
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中任选2人作进一步的调查,求抽到的两人恰好来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某班主任对全班50名学生进行了作业量多少的调查.数据如下表:

 
认为作业多
认为作业不多
合计
喜欢玩游戏
18
9
 
不喜欢玩游戏
8
15
 
合计
 
 
 
(1)请完善上表中所缺的有关数据;
(2)试通过计算说明在犯错误的概率不超过多少的前提下认为喜欢玩游戏与作业量的多少有关系?
附:
P(K2K0)
0.05
0.025
0.010
0.005
0.001
K0
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某地粮食需求量逐年上升,下表是部分统计数据:

年份(年)
2002
2004
2006
2008
2010
需求量
(万吨)
236
246
257
276
286
(1)利用所给数据求年需求量与年份之间的回归直线方程=x+.
(2)利用(1)中所求出的直线方程预测该地2014年的粮食需求量.

查看答案和解析>>

同步练习册答案