精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分别交AC、PC于D、E两点,又PB=BC,PA="A" B.
(Ⅰ)求证:PC⊥平面BDE;
(Ⅱ)若点Q是线段PA上任一点,求证:BD⊥DQ;
(Ⅲ)求线段PA上点Q的位置,使得PC//平面BDQ.
(Ⅰ)略
(Ⅱ)略
(Ⅲ)AQ=AP时,PC//QD,从而PC//平面BDQ .  
(Ⅰ)证明:由等腰三角形PBC,得BE⊥PC
又DE垂直平分PC,∴DE⊥PC
∴PC⊥平面BDE,………… 4分
(Ⅱ)由(Ⅰ),有PC⊥BD
因为 PA⊥底面ABC ,所以PA⊥BD
BD⊥平面PAC,所以点Q是线段PA上任一点都有
BD⊥DQ   ………………………… 8分
(Ⅲ)解:不妨令PA=AB=1,有PB=BC= 
计算得AD=AC 所以点Q在线段PA的处,
即AQ=AP时,PC//QD,从而PC//平面BDQ .  ……………………… 12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)已知三棱锥A-PBC ∠ACB=90°
AB=20  BC=4  PAPC,D为AB中点且△PDB为正三角形
(1)求证:BC⊥平面PAC;
(2)求三棱锥D-PBC的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(1)求证:平面平面
(2)求正方形的边长;
(3)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

的边长为4,CD是AB边上的高,E、F分别是AC和BC的中点,现将沿CD翻折成直二面角,(1)求证:;(2)若点P在线段BC上,且BC=3BP,求证.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图所示,在四棱台中, 底面ABCD是正方形,且底面 , .
(1)求异面直线所成角的余弦值;
(2)试在平面中确定一个点,使得平面
(3)在(2)的条件下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图,四棱锥P—ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.
(Ⅰ)求证:BE//平面PAD;
(Ⅱ)若BE⊥平面PCD。
(i)求异面直线PD与BC所成角的余弦值;
(ii)求二面角E—BD—C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCDEFG分别是PAPBBC的中点.
(I)求证:EF平面PAD
(II)求平面EFG与平面ABCD所成锐二面角的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱中, .
(1)求证: ;
(2)请在线段上确定一点P,使直线与平面所成角的正弦等于.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

三棱锥A-BCD中,BAAD,BCCD,且AB=1,AD=,则此三棱锥外接球的体积为         

查看答案和解析>>

同步练习册答案