精英家教网 > 高中数学 > 题目详情
直线y=与双曲线=1(a>0,b>0)的交点在实轴上的射影恰好为双曲线的焦点,则双曲线的离心率为( )
A.
B.2
C.2
D.4
【答案】分析:把直线y=x代入曲线 可得 y=±,由题意可得  =,2e2-3e-2=0,解方程求得e 的值.
解答:解:把直线y=x代入曲线-=1(a>0,b>0)可得,y=±
由题意可得  =,∴=,∴2e2-3e-2=0,∴e=2,或 e=-
故选  B.
点评:本题考查双曲线的标准方程,以及双曲线的简单性质的应用,得到 =,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x22
-y2=1
,过点P(0,1)作斜率k<0的直线l与双曲线恰有一个交点.
(1)求直线l的方程;
(2)若点M在直线l与x≥0,y≥0所围成的三角形的三条边上及三角形内运动,求z=-x+y的最小值.

查看答案和解析>>

科目:高中数学 来源:2005-2006学年北京市朝阳区高三(上)期末数学试卷(文科)(解析版) 题型:选择题

直线y=与双曲线=1(a>0,b>0)的交点在实轴上的射影恰好为双曲线的焦点,则双曲线的离心率为( )
A.
B.2
C.2
D.4

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省杭州二中高三(下)3月月考数学试卷(文科)(解析版) 题型:选择题

直线y=与双曲线=1(a>0,b>0)的交点在实轴上的射影恰好为双曲线的焦点,则双曲线的离心率为( )
A.
B.2
C.2
D.4

查看答案和解析>>

科目:高中数学 来源:2010年浙江省杭州市学军中学高考数学模拟试卷(文科)(解析版) 题型:选择题

直线y=与双曲线=1(a>0,b>0)的交点在实轴上的射影恰好为双曲线的焦点,则双曲线的离心率为( )
A.
B.2
C.2
D.4

查看答案和解析>>

同步练习册答案