【题目】已知椭圆C的两个焦点分别为F1(﹣1,0)、F2(1,0),短轴的两个端点分别为B1 , B2
(1)若△F1B1B2为等边三角形,求椭圆C的方程;
(2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P,Q两点,且 ,求直线l的方程.
【答案】
(1)解:设椭圆C的方程为 .
根据题意知 ,解得 ,
故椭圆C的方程为 .
(2)解:由2b=2,得b=1,所以a2=b2+c2=2,得椭圆C的方程为 .
当直线l的斜率不存在时,其方程为x=1,不符合题意;
当直线l的斜率存在时,设直线l的方程为y=k(x﹣1).
由 ,得(2k2+1)x2﹣4k2x+2(k2﹣1)=0.
设P(x1,y1),Q(x2,y2),则
,
因为 ,所以 ,即
=
=
= ,解得 ,即k= .
故直线l的方程为 或 .
【解析】(1)由△F1B1B2为等边三角形可得a=2b,又c=1,集合a2=b2+c2可求a2 , b2 , 则椭圆C的方程可求;(2)由给出的椭圆C的短轴长为2,结合c=1求出椭圆方程,分过点F2的直线l的斜率存在和不存在讨论,当斜率存在时,把直线方程和椭圆方程联立,由根与系数关系写出两个交点的横坐标的和,把 转化为数量积等于0,代入坐标后可求直线的斜率,则直线l的方程可求.
【考点精析】本题主要考查了一般式方程和椭圆的标准方程的相关知识点,需要掌握直线的一般式方程:关于的二元一次方程(A,B不同时为0);椭圆标准方程焦点在x轴:,焦点在y轴:才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A万元,则超出部分按2log5(A+1)进行奖励.记奖金y(单位:万元),销售利润x(单位:万元)
(1)写出该公司激励销售人员的奖励方案的函数模型;
(2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为 、 、 、 、 ;以D为起点,其余顶点为终点的向量分别为 、 、 、 、 .若m、M分别为( + + )( + + )的最小值、最大值,其中{i,j,k}{1,2,3,4,5},{r,s,t}{1,2,3,4,5},则m、M满足( )
A.m=0,M>0
B.m<0,M>0
C.m<0,M=0
D.m<0,M<0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在长方体ABCD﹣A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定常数c>0,定义函数f(x)=2|x+c+4|﹣|x+c|.数列a1 , a2 , a3 , …满足an+1=f(an),n∈N* .
(1)若a1=﹣c﹣2,求a2及a3;
(2)求证:对任意n∈N* , an+1﹣an≥c;
(3)是否存在a1 , 使得a1 , a2 , …,an , …成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集为R,函数 的定义域为M,则RM为( )
A.[﹣1,1]
B.(﹣1,1)
C.(﹣∞,﹣1]∪[1,+∞)
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中错误的是( )
A. 平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行;
B. 若两个平面平行,则分别位于这两个平面的直线也互相平行;
C. 平行于同一个平面的两个平面平行;
D. 若两个平面平行,则其中一个平面内的直线平行于另一个平面;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2016高考新课标II,理15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)已知过原点的动直线与圆 相交于不同的两点,.
(1)求圆的圆心坐标;
(2)求线段的中点的轨迹的方程;
(3)是否存在实数,使得直线 与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com