精英家教网 > 高中数学 > 题目详情
9.证明:tan2α-$\frac{1}{ta{n}^{2}α}$=-$\frac{2sin4α}{si{n}^{3}2α}$.

分析 化切为弦,得到tan2α-$\frac{1}{ta{n}^{2}α}$=$\frac{si{n}^{2}α}{co{s}^{2}α}-\frac{co{s}^{2}α}{si{n}^{2}α}$,再通分,利用同角三角函数关系式、二倍角公式能证明tan2α-$\frac{1}{ta{n}^{2}α}$=-$\frac{2sin4α}{si{n}^{3}2α}$.

解答 证明:tan2α-$\frac{1}{ta{n}^{2}α}$=$\frac{si{n}^{2}α}{co{s}^{2}α}-\frac{co{s}^{2}α}{si{n}^{2}α}$=$\frac{si{n}^{4}α-co{s}^{4}α}{si{n}^{2}αco{s}^{2}α}$=$\frac{si{n}^{2}α-co{s}^{2}α}{(\frac{1}{2}sin2α)^{2}}$=-$\frac{cos2α}{\frac{1}{4}si{n}^{2}2α}$=-$\frac{4cos2α}{si{n}^{2}2α}$
-$\frac{2sin4α}{si{n}^{3}2α}$=-$\frac{2×2sin2αcos2α}{si{n}^{3}2α}$=-$\frac{4soc2α}{si{n}^{2}2α}$=-$\frac{2sin4α}{si{n}^{3}2α}$.
∴tan2α-$\frac{1}{ta{n}^{2}α}$=-$\frac{2sin4α}{si{n}^{3}2α}$.

点评 本题考查三角形恒等式的证明,是中档题,解题时要认真审题,注意化切为弦、同角三角函数关系式、二倍角公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设变量x与y线性相关,且相关系数为0.875,设变量x1=10x,y1=10y,则变量y1与x1的相关系数为(  )
A.0.875B.0.125C.1D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知Rt△AOB的面积为1,O为直角顶点,设向量$\overrightarrow{a}$═$\frac{\overrightarrow{OA}}{|\overrightarrow{OA}|}$,$\overrightarrow{b}$=$\frac{\overrightarrow{OB}}{|\overrightarrow{OB}|}$,$\overrightarrow{OP}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知实数x,y满足y=x2-x+2(-1≤x≤1),试求$\frac{y+3}{x+2}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l1与l2:x-y+1=0平行,且l1,l2之间的距离为$\sqrt{2}$,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设y=f(x)是定义在实数集R上的函数,且满足f(-x)=f(x)与f(4-x)=f(x),若当x∈[0,2]时,f(x)=-x2+1,则当x∈[-6,-4]时,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.过点(0,1)作曲线L:y=lnx的切线,切点为A.又L与x轴交于B点,区城D由L、x轴与直线AB围成,求区域D的面积及D绕x轴旋转一周所得旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,半径为R的球O中有一内接圆柱,当圆柱的侧面积最大时,球的体积与该圆柱的体积之比是(  )
A.$\frac{4}{3}$B.$\frac{4\sqrt{2}}{3}$C.$\sqrt{2}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在空间四边形ABCD中,连接AC,BD,E,F分别是边AC.BD的中点,设$\overrightarrow{AB}$=$\overrightarrow{a}$-2$\overrightarrow{c}$,$\overrightarrow{CD}$=5$\overrightarrow{a}$+6$\overrightarrow{b}$-8$\overrightarrow{c}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$表示$\overrightarrow{EF}$.

查看答案和解析>>

同步练习册答案