分析 化切为弦,得到tan2α-$\frac{1}{ta{n}^{2}α}$=$\frac{si{n}^{2}α}{co{s}^{2}α}-\frac{co{s}^{2}α}{si{n}^{2}α}$,再通分,利用同角三角函数关系式、二倍角公式能证明tan2α-$\frac{1}{ta{n}^{2}α}$=-$\frac{2sin4α}{si{n}^{3}2α}$.
解答 证明:tan2α-$\frac{1}{ta{n}^{2}α}$=$\frac{si{n}^{2}α}{co{s}^{2}α}-\frac{co{s}^{2}α}{si{n}^{2}α}$=$\frac{si{n}^{4}α-co{s}^{4}α}{si{n}^{2}αco{s}^{2}α}$=$\frac{si{n}^{2}α-co{s}^{2}α}{(\frac{1}{2}sin2α)^{2}}$=-$\frac{cos2α}{\frac{1}{4}si{n}^{2}2α}$=-$\frac{4cos2α}{si{n}^{2}2α}$
-$\frac{2sin4α}{si{n}^{3}2α}$=-$\frac{2×2sin2αcos2α}{si{n}^{3}2α}$=-$\frac{4soc2α}{si{n}^{2}2α}$=-$\frac{2sin4α}{si{n}^{3}2α}$.
∴tan2α-$\frac{1}{ta{n}^{2}α}$=-$\frac{2sin4α}{si{n}^{3}2α}$.
点评 本题考查三角形恒等式的证明,是中档题,解题时要认真审题,注意化切为弦、同角三角函数关系式、二倍角公式的合理运用.
科目:高中数学 来源: 题型:选择题
A. | 0.875 | B. | 0.125 | C. | 1 | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{3}$ | B. | $\frac{4\sqrt{2}}{3}$ | C. | $\sqrt{2}$ | D. | $\frac{\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com