精英家教网 > 高中数学 > 题目详情

(2009湖南卷理)在半径为13的球面上有A , B, C 三点,AB=6,BC=8,CA=10,则          

(1)球心到平面ABC的距离为 12  ;

(2)过A,B两点的大圆面为平面ABC所成二面角为(锐角)的正切值为   3  

【答案】:(1)12;(2)3

【解析】(1)由的三边大小易知此三角形是直角三角形,所以过三点小圆的直径即为10,也即半径是5,设球心到小圆的距离是,则由,可得。(2)设过三点的截面圆的圆心是中点是点,球心是点,则连三角形,易知就是所求的二面角的一个平面角,,所以,即正切值是3。.   

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009湖南卷理)从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位                                                              [  ]

A  85             B 56            C 49            D 28  

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷理)设函数在(,+)内有定义。对于给定的正数K,定义函数

                 

取函数=。若对任意的,恒有=,则           

A.K的最大值为2                       B. K的最小值为2

C.K的最大值为1                       D. K的最小值为1                     【 】

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷理)将正ABC分割成≥2,n∈N)个全等的小正三角形(图2,图3分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于ABC的三遍及平行于某边的任一直线上的数(当数的个数不少于3时)都分别一次成等差数列,若顶点A ,B ,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,f(3)=   ,…, 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷理)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.,现在3名工人独立地从中任选一个项目参与建设。           

(I)求他们选择的项目所属类别互不相同的概率;

(II)记为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求 的分布列及数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷理)(本小题满分12分)

如图4,在正三棱柱中,

D是的中点,点E在上,且

(I)                    证明平面平面

(II)                  求直线和平面所成角的正弦值。           

查看答案和解析>>

同步练习册答案