精英家教网 > 高中数学 > 题目详情

【题目】如图,在矩形中, 的中点,以为折痕将向上折起, 变为,且平面平面.

(Ⅰ)求证:

(Ⅱ)求二面角的大小.

【答案】(Ⅰ)证明见解析;(Ⅱ) .

【解析】试题分析:(Ⅰ)根据勾股定理推导出,取的中点,连结,则 ,从而平面,由此证得结论成立;(Ⅱ)以为原点, 轴, 轴,过作平面的垂线为轴,建立空间直角坐标系,利用向量法能求出二面角的大小.

试题解析:(Ⅰ)证明:∵

,∴

的中点,连结,则

∵ 平面平面,/span>

平面,∴

从而平面,∴

(Ⅱ)如图建立空间直角坐标系,

,从而=(4,0,0), .

为平面的法向量,

可以取

为平面的法向量,

可以取

因此, ,有,即平面 平面

故二面角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图象在点处的切线为也为函数的图象的切线必须满足

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)(题文)已知椭圆的离心率为,过右焦点且斜率为1的直线交椭圆A,B两点, N为弦AB的中点,O为坐标原点.

(1)求直线ON的斜率

(2)求证:对于椭圆上的任意一点M,都存在,使得成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品近一个月内(30天)预计日销量(件)与时间t()的关系如图1所示,单价(万元/件)与时间t()的函数关系如图2所示,(t为整数)

1)试写出的解析式;

2)求此商品日销售额的最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,分别过椭圆左、右焦点的动直线相交于与椭圆分别交于不同四点,直线的斜率满足.已知当轴重合时,.

Ⅰ)求椭圆的方程;

Ⅱ)是否存在定点使得为定值?若存在,求出点坐标并求出此定值;若不存在,说明理由.

【答案】(Ⅰ).

【解析】试题分析:(1)当轴重合时,垂直于轴,得,,从而得椭圆的方程;(2)由题目分析如果存两定点,则点的轨迹是椭圆或者双曲线 ,所以把坐标化,可得点的轨迹是椭圆,从而求得定点和点.

试题解析:轴重合时,, ,所以垂直于轴,得, ,椭圆的方程为.

焦点坐标分别为, 当直线斜率不存在时,点坐标为;

当直线斜率存在时,设斜率分别为, , 得:

, 所以:, 则:

. 同理:, 因为

, 所以, , 由题意知, 所以

, 设,则,即,由当直线斜率不存在时,点坐标为也满足此方程,所以点在椭圆.存在点和点,使得为定值,定值为.

考点:圆锥曲线的定义,性质,方程.

【方法点晴】本题是对圆锥曲线的综合应用进行考查,第一问通过两个特殊位置,得到基本量,得,,从而得椭圆的方程,第二问由题目分析如果存两定点,则点的轨迹是椭圆或者双曲线 ,本题的关键是从这个角度出发,把坐标化,求得点的轨迹方程是椭圆,从而求得存在两定点和点.

型】解答
束】
21

【题目】已知.

(Ⅰ)若,求的极值;

(Ⅱ)若函数的两个零点为,记,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)log4(4x1)kx(k∈R)是偶函数.

(1)k的值;

(2)g(x)log4,若函数f(x)g(x)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列不等式的解集:

1

2

3

4

5

6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】容器中有种粒子,若相同种类的两颗粒子发生碰撞,则变成一颗粒子;不同种类的两颗粒子发生碰撞,会变成另外一种粒子. 例如,一颗粒子和一颗粒子发生碰撞则变成一颗粒子.现有粒子颗,粒子颗,粒子颗,如果经过各种两两碰撞后,只剩颗粒子. 给出下列结论:

① 最后一颗粒子可能是粒子

② 最后一颗粒子一定是粒子

③ 最后一颗粒子一定不是粒子

④ 以上都不正确

其中正确结论的序号是________.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线C的极坐标方程为ρ4cosθ+3ρsin2θ=0,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l过点M10),倾斜角为

)求曲线C的直角坐标方程与直线l的参数方程;

)若曲线C经过伸缩变换后得到曲线C′,且直线l与曲线C′交于AB两点,求|MA|+|MB|

查看答案和解析>>

同步练习册答案