精英家教网 > 高中数学 > 题目详情
8.点P(2,5)关于直线x+y=1的对称点的坐标是(  )
A.(-5,-2)B.(-4,-1)C.(-6,-3)D.(-4,-2)

分析 设点P(2,5)关于直线x+y=1的对称点Q的坐标为(m,n),利用垂直及中点在轴上这两个条件求出m、n的值,可得结论.

解答 解:设点P(2,5)关于直线x+y=1的对称点Q的坐标为(m,n),
则由题意可得$\frac{n-5}{m-2}•(-1)=-1$,且  $\frac{m+2}{2}$+$\frac{n+5}{2}$=1,求得$\left\{\begin{array}{l}{m=-4}\\{n=-1}\end{array}\right.$,
故选:B.

点评 本题主要考查求一个点关于某直线的对称点的坐标的求法,利用了垂直及中点在轴上这两个条件,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.[$\sqrt{n}$]表示不超过$\sqrt{n}$的最大整数.若
S1=[$\sqrt{1}$]+[$\sqrt{2}$]+[$\sqrt{3}$]=3,
S2=[$\sqrt{4}$]+[$\sqrt{5}$]+[$\sqrt{6}$]+[$\sqrt{7}$]+[$\sqrt{8}$]=10,
S3=[$\sqrt{9}$]+[$\sqrt{10}$]+[$\sqrt{11}$]+[$\sqrt{12}$]+[$\sqrt{13}$]+[$\sqrt{14}$]+[$\sqrt{15}$]=21,
…,
则Sn=(  )
A.n(n+2)B.n(n+3)C.(n+1)2-1D.n(2n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=$\frac{sinx}{|tanx|}$(0<x<π,x≠$\frac{π}{2}$)的大致图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将点的直角坐标(-2,2$\sqrt{3}$)化为极坐标为(  )
A.(4,$\frac{2}{3}$π)B.(-4,$\frac{2}{3}$π)C.(-4,$\frac{1}{3}$π)D.(4,$\frac{1}{3}$π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.关于x的不等式x2+ax-2<0在区间[1,4]上有解,则实数a的取值范围为(  )
A.(-∞,1)B.(-∞,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.对于实数a,b,c,下列命题正确的是(  )
A.若a<b<0,则a2>ab>b2B.若a>b,则ac>bc
C.若a>b,则ac2>bc2D.若a<b<0,则$\frac{b}{a}$>$\frac{a}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.平面xOy内,动点P到点F($\sqrt{2}$,0)的距离与它到直线x=2$\sqrt{2}$的距离之比为$\frac{{\sqrt{2}}}{2}$;
(1)求动点P的轨迹方程;
(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.观察下列等式:
1+2+3+…+n=$\frac{1}{2}$n(n+1);
1×2+2×3+3×4+…+n(n+1)=$\frac{1}{3}$n(n+1)(n+2);
1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=$\frac{1}{4}$n(n+1)(n+2)(n+3);
照此规律,
1×2×3×4+2×3×4×5+3×4×5×6+…+n(n+1)(n+2)(n+3)=$\frac{1}{5}$n(n+1)(n+2)(n+3)(n+4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知杨辉三角,将第4行的第一个数乘以1,第2个数乘以2,第3个数乘以4,第4个数乘以8后,这一行所以所有数字之和等于27(用数字作答):若等比数列{an}的前项是a1,公比是q(q≠1),将杨辉三角的第n+1行的第1个数乘以a1,第2个数乘以a2,…,第n+1个数乘以an+1后,这一行所有数字之和等于a1(1+q)n(用a1,q.n表示)

查看答案和解析>>

同步练习册答案