【题目】定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)-的所有零点之和为______.
【答案】
【解析】
根据分段函数的解析式和奇函数的对称性作出函数在上的图象和的图象,利用数形结合的方法求解即可
∵当x≥0时,f(x)=;
即x∈时,f(x)=
x∈[1,3]时,f(x)=x-2∈[-1,1];
x∈(3,+∞)时,f(x)=4-x∈(-∞,-1)
画出x≥0时f(x)的图象,
再利用奇函数的对称性,画出x<0时f(x)的图象,如图所示;
则直线,与y=f(x)的图象有5个交点,则方程f(x)-=0共五个实根,
最左边两根之和为-6,最右边两根之和为6,
∵x∈(-1,0)时,-x∈(0,1),∴f(-x)=
又f(-x)=-f(x),
∴f(x)=-=
∴中间的一个根满足
即1-x=,解得x=1-,
∴所有根的和为
故答案为:
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x∈(-1,1)),有下列结论:
(1)x∈(-1,1),等式f(-x)+f(x)=0恒成立;
(2)m∈[0,+∞),方程|f(x)|=m有两个不等实数根;
(3)x1,x2∈(-1,1),若x1≠x2,则一定有f(x1)≠f(x2);
(4)存在无数多个实数k,使得函数g(x)=f(x)-kx在(-1,1)上有三个零点
则其中正确结论的序号为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项等比数列{an}的前n项和为Sn , 且S2=6,S4=30,n∈N* , 数列{bn}满足bnbn+1=an , b1=1
(1)求an , bn;
(2)求数列{bn}的前n项和为Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,C是以AB为直径的圆O上异于A,B的点,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F 分别是PC,PB的中点,记平面AEF与平面ABC的交线为直线l.
(Ⅰ)求证:直线l⊥平面PAC;
(Ⅱ)直线l上是否存在点Q,使直线PQ分别与平面AEF、直线EF所成的角互余?若存在,求出|AQ|的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的奇数项成等差数列,偶数项成等比数列,且公差和公比都是2,若对满足m+n≤5的任意正整数m,n,均有am+an=am+n成立. (I)求数列{an}的通项公式;
(II)若bn= ,求数列{bn}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com