精英家教网 > 高中数学 > 题目详情
16.点B是点A(1,2,3)在坐标平面yOz内的射影,则|OB|等于(  )
A.$\sqrt{14}$B.$\sqrt{13}$C.2$\sqrt{3}$D.$\sqrt{10}$

分析 根据点B是点A(1,2,3)在yOz坐标平面内的射影,O为坐标原点,得到点B的坐标,根据两点之间的距离公式得到结果.

解答 解:∵点B是点A(1,2,3)在yOz坐标平面内的射影
∴B点的坐标是(0,2,3)
∴|OB|等于$\sqrt{13}$,
故选B.

点评 本题考查空间直角坐标系,考查空间中两点间的距离公式,是一个基础题,解题的关键是,一个点在一个坐标平面上的射影的坐标同这个点的坐标的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.齐王与田忌赛马,每场比赛三匹马各出场一次,共赛三次,以胜的次数多者为赢.田忌的上马优于齐王的中马,劣于齐王的上马,田忌的中马优于齐王的下马,劣于齐王的中马,田忌的下马劣于齐王的下马.现各出上、中、下三匹马分组进行比赛,如双方均不知对方马的出场顺序,则田忌获胜的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{9}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.要得到函数y=cos(2x-$\frac{π}{6}$)的图象,只需将函数y=sin2x的图象(  )
A.向左平移$\frac{π}{12}$个单位B.向左平移$\frac{π}{6}$个单位
C.向右平移$\frac{π}{12}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图(1)在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=$\frac{1}{2}$AD=a,E是AD的中点,O是AC与BE的交点,将△ABE沿BE折起到图(2)中△A1BE的位置,得到四棱锥A1-BCDE.


(Ⅰ)求证:CD⊥平面A1OC;
(Ⅱ)当平面A1BE⊥平面BCDE时,若a=2,求四棱锥A1-BCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图是甲、乙两位同学高二上学期历史成绩的茎叶图,有一个数字被污损,用a(3≤a≤8且a∈N)表示.
(1)若乙同学算出自己历史平均成绩是92分,求a的值及乙同学历史成绩的方差;
(2)求甲同学历史平均成绩不低于乙同学历史平均成绩的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)满足:2f(x)•f(y)=f(x+y)+f(x-y),f(1)=$\frac{1}{2}$,且f(x)在[0,3]上单调递减,则方程f(x)=$\frac{1}{2}$在区间[-2014,2014]内根的个数为1343.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若存在x0>1,使不等式(x0+1)ln  x0<a(x0-1)成立,则实数a的取值范围是 (  )
A.(-∞,2)B.(2,+∞)C.(1,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在直角坐标系xOy中,点A在曲线$C:y={({\frac{3}{2}})^x}$上运动,在x轴正半轴取点B,作正三角形OAB,这样的正三角形有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设0<b<1+a,若关于x的不等式(x-b)2>(ax)2的解集中的整数解恰有4个,则实数a的取值范围是1<a<3.

查看答案和解析>>

同步练习册答案