精英家教网 > 高中数学 > 题目详情
若命题“?x∈R,使得x2+(a-1)x+1≤0”为假命题,则实数a的范围______.
∵“?x∈R,使得x2+(a-1)x+1≤0
∴x2+(a-1)x+1=0有两个实根
∴△=(a-1)2-4≥0
∴a≤-1,a≥3,
所以命题“?x∈R,使得x2+(a-1)x+1≤0”为假命题,则实数a的范围(-1,3).
故答案为:(-1,3).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

7、若命题“?x∈R,使x2+(a-1)x+1<0”是假命题,则实数a的取值范围为
-1≤a≤3

查看答案和解析>>

科目:高中数学 来源: 题型:

若命题“?x∈R,使(a2-3a+2)x2+(a-1)x+2<0”是真命题,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

4、若命题“?x∈R,使x2+(a-1)x+1<0”是假命题,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省襄阳市襄州、枣阳、宜城、曾都一中联考高二(下)期中数学试卷(理科)(解析版) 题型:填空题

若命题“?x∈R,使x2+(a-1)x+1<0”是假命题,则实数a的取值范围为   

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省徐州市高二(下)期末数学试卷(文科)(解析版) 题型:填空题

若命题“?x∈R,使x2+(a-1)x+1<0”是假命题,则实数a的取值范围为   

查看答案和解析>>

同步练习册答案