【题目】下列说法正确的是( )
A.二进制数11010(2)化为八进制数为42(8)
B.若扇形圆心角为2弧度,且扇形弧所对的弦长为2,则这个扇形的面积为
C.用秦九韶算法计算多项式f(x)=3x6+5x4+6x3﹣4x﹣5当x=3时的值时,v1=3v0+5=32
D.正切函数在定义域内为单调增函数
【答案】B
【解析】解:A.二进制数11010(2)=1×24+1×23+0×22+1×21+0×20=26.
∵26÷8=3…2
3÷8=0…3
∴26(10)=32(8)故A错误,
B.如图:设∠AOB=2,AB=2,过点0作OC⊥AB,C为垂足,
并延长OC交 于D,则∠AOD=∠BOD=1,AC= AB=1.
Rt△AOC中,r=AO= = ,
从而弧长为l=αr=2× = ,
则这个扇形的面积为S= = ,故B正确,
C.由秦九韶算法可得f(x)=(((((3x+5)x+6)x+0)x﹣4)x﹣5),
当x=3时,可得v0=3,v1=2﹣12=﹣10,v2=﹣10×2+60=40,v3=40×2﹣160=﹣80.
v0=a6=3,v1=v0x+a5=3×3+5=14,故C错误,
D.正切函数在每一个区间内(kπ﹣ ,kπ+﹣ )为单调增函数,但在定义域内不是单调函数,故D错误,
故选:B
【考点精析】利用命题的真假判断与应用对题目进行判断即可得到答案,需要熟知两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
科目:高中数学 来源: 题型:
【题目】已知A(3,5),B(-1,3),C(-3,1)为△ABC的三个顶点,O、M、N分别为边AB、BC、CA的中点,求△OMN的外接圆的方程,并求这个圆的圆心和半径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【河南省2017届高中毕业年级考前预测数学(理)】已知圆与直线相切,设点为圆上一动点, 轴于,且动点满足,设动点的轨迹为曲线.
(1)求曲线的方程;
(2)直线与直线垂直且与曲线交于两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2015江苏高考,18】如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且右焦点F到左准线l的距离为3.
(1)求椭圆的标准方程;
(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从个招标问题中随机抽取个问题,已知这个招标问题中,甲公司可正确回答其中的道題目,而乙公司能正确回答毎道题目的概率均为,甲、乙两家公司对每题的回答都是相互独立,互不影响的.
(1)求甲、乙两家公司共答对道题目的概率;
(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在D上的函数,若存在区间[m,n]D及正实数k,使函数f(x)在[m,n]上的值域恰为[km,kn],则称函数f(x)是k型函数.给出下列说法:
①f(x)=3﹣ 不可能是k型函数;
②若函数f(x)= (a≠0)是1型函数,则n﹣m的最大值为 ;
③若函数f(x)=﹣ x2+x是3型函数,则m=﹣4,n=0.
其中正确说法个数为( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos2ωx﹣sin2ωx+2 cosωxsinωx,其中ω>0,若f(x)相邻两条对称轴间的距离不小于
(1)求ω的取值范围及函数f(x)的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,a= ,b+c=3,当ω最大时,f(A)=1,求sinBsinC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市对贫困家庭自主创业给予小额贷款补贴,每户贷款额为万元,贷款期限有个月、个月、个月、个月、个月五种,这五种贷款期限政府分别需要补助元、元、元、元、元,从年享受此项政策的困难户中抽取了户进行了调查统计,选取贷款期限的频数如下表:
贷款期限 | 个月 | 个月 | 个月 | 个月 | 个月 |
频数 |
以商标各种贷款期限的频率作为年贫困家庭选择各种贷款期限的概率.
(1)某小区年共有户准备享受此项政策,计算其中恰有两户选择贷款期限为个月的概率;
(2)设给享受此项政策的某困难户补贴为元,写出的分布列,若预计年全市有万户享受此项政策,估计年该市共要补贴多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com