精英家教网 > 高中数学 > 题目详情

如图,已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别是PD,PC,BC的中点.

(1)求证:平面EFG⊥平面PAD;
(2)若M是线段CD上一点,求三棱锥M﹣EFG的体积.

(1)详见解析;(2).

解析试题分析:(1)要证明面面垂直,只需在一个平面内找到另一平面的一条垂线.由已知平面平面,且,可证平面,再根据是中位线,可证,从而平面,进而再证平面平面,该题实质是先找到面的一条垂线,再将平移到面内;
(2)点是线段的动点,考虑到到面的距离相等,故,再结合第(1)问结果,取的中点连接,据面面垂直的性质,点的距离就是三棱锥的高,再求,进而求体积.
试题解析:(1)∵平面平面,平面平面 平面平面,又中,分别是的中点,,可得平面 平面,∴平面平面
(2) 平面平面平面,因此上的点到平面的距离等于点到平面的距离,∴,取的中点连接,则平面 平面,∴,于是
∵平面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,四边形为菱形,,四边形为矩形,若.

(1)求证:平面
(2)求证:
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体中,, 沿平面把这个长方体截成两个几何体: 几何体(1);几何体(2)

(I)设几何体(1)、几何体(2)的体积分为是,求的比值
(II)在几何体(2)中,求二面角的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)在三棱柱中,侧面为矩形,的中点,交于点侧面.

(1)证明:
(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形为矩形,平面,平面于点,且点上.

(1)求证:
(2)求四棱锥的体积;
(3)设点在线段上,且,试在线段上确定一点,使得平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

三棱锥P?ABC中,PA⊥平面ABC,AB⊥BC。

(1)证明:平面PAB⊥平面PBC;
(2)若,PB与底面ABC成60°角,分别是的中点,是线段上任意一动点(可与端点重合),求多面体的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形为矩形,平面上的点,且平面.

(1)求三棱锥的体积;
(2)设在线段上,且满足,试在线段上确定一点,使得平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三棱柱,底面三角形为正三角形,侧棱底面的中点,中点.

(Ⅰ)求证:直线平面
(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.

查看答案和解析>>

同步练习册答案