如图,已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别是PD,PC,BC的中点.
(1)求证:平面EFG⊥平面PAD;
(2)若M是线段CD上一点,求三棱锥M﹣EFG的体积.
(1)详见解析;(2).
解析试题分析:(1)要证明面面垂直,只需在一个平面内找到另一平面的一条垂线.由已知平面平面,且,可证平面,再根据是中位线,可证,从而平面,进而再证平面平面,该题实质是先找到面的一条垂线,再将平移到面内;
(2)点是线段的动点,考虑到和到面的距离相等,故,再结合第(1)问结果,取的中点连接,据面面垂直的性质,点到的距离就是三棱锥的高,再求,进而求体积.
试题解析:(1)∵平面平面,平面平面, 平面,,平面,又中,分别是的中点,,可得平面, 平面,∴平面平面;
(2), 平面,平面,平面,因此上的点到平面的距离等于点到平面的距离,∴,取的中点连接,则,平面, 平面,∴,于是,
∵平面平面
科目:高中数学 来源: 题型:解答题
如图,在长方体中,, 沿平面把这个长方体截成两个几何体: 几何体(1);几何体(2)
(I)设几何体(1)、几何体(2)的体积分为是、,求与的比值
(II)在几何体(2)中,求二面角的正切值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
三棱锥P?ABC中,PA⊥平面ABC,AB⊥BC。
(1)证明:平面PAB⊥平面PBC;
(2)若,,PB与底面ABC成60°角,分别是与的中点,是线段上任意一动点(可与端点重合),求多面体的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com