精英家教网 > 高中数学 > 题目详情
3.设函数f(x)=sin(ωx+φ),其中ω>0,|φ|<$\frac{π}{2}$,若cos$\frac{π}{3}cosφ-sin\frac{2π}{3}$sinφ=0,且图象的两条对称轴间的最近距离是$\frac{π}{2}$.
(1)求函数f(x)的解析式;
(2)若A,B,C是△ABC的三个内角,且f(A)=-1,求sinB+sinC的取值范围.

分析 (1)利用两角差的余弦函数公式及余弦函数的图象和性质可求φ=$\frac{π}{6}$+kπ,k∈Z,结合范围|φ|<$\frac{π}{2}$,可求φ,
由题意可求周期为T=π,利用周期公式可求ω,从而可得函数解析式.
(2)由题意可得sin(2x+$\frac{π}{6}$)=-1,结合范围0<A<π,可解得A=$\frac{2π}{3}$,从而B+C=$\frac{π}{3}$,利用三角函数恒等变换的应用可将sinB+sinC化为sin(B+$\frac{π}{3}$),结合范围0<B<$\frac{π}{3}$,利用正弦函数的图象和性质即可求其取值范围.

解答 (本题满分为14分)
解:(1)∵cos$\frac{π}{3}cosφ-sin\frac{2π}{3}$sinφ=cos($\frac{π}{3}$+φ)=0,
∴$\frac{π}{3}$+φ=$\frac{π}{2}$+kπ,得φ=$\frac{π}{6}$+kπ,k∈Z
∵|φ|<$\frac{π}{2}$,∴取k=0,得φ=$\frac{π}{6}$,
∵函数f(x)图象的一条对称轴离一个对称中心的最近距离是$\frac{π}{4}$,
∴周期为T=π,得ω=$\frac{2π}{T}$=2,得f(x)=sin(2x+$\frac{π}{6}$).…(6分)
(2)由f(A)=-1,得sin(2x+$\frac{π}{6}$)=-1,
∵A是△ABC的内角,0<A<π,
∴$\frac{π}{6}$<2A+$\frac{π}{6}$<$\frac{13π}{6}$,得2A+$\frac{π}{6}$=$\frac{3π}{2}$,
∴A=$\frac{2π}{3}$,从而B+C=$\frac{π}{3}$.
由sinB+sinC=sinB+sin($\frac{π}{3}$-B)=$\frac{\sqrt{3}}{2}$cosB+$\frac{1}{2}$sinB
∴sinB+sinC=sin(B+$\frac{π}{3}$),…(12分)
∵0<B<$\frac{π}{3}$,$\frac{π}{3}$<B+$\frac{π}{3}$<$\frac{2π}{3}$,
∴$\frac{\sqrt{3}}{2}$<sin(B+$\frac{π}{3}$)≤1,即sinB+sinC∈($\frac{\sqrt{3}}{2}$,1].
因此,sinB+sinC的取值范围是($\frac{\sqrt{3}}{2}$,1].…(14分)

点评 本题主要考查了两角差的余弦函数公式,正弦函数、余弦函数的图象和性质,周期公式,三角函数恒等变换的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知a∈R,命题p:“?x∈[0,2],2x-4x+a≤0均成立”,命题q:“函数f(x)=ln(x2+ax+1)定义域为R”,
(1)若命题p为真命题,求实数a的取值范围;
(2)若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某学生对其亲属30人的饮食习惯进行了一次调查,并用如图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉食为主)
(1)根据以上数据完成下列2×2列联表:
 主食蔬菜 主食肉类合计
50岁以下   
50岁以上   
合计   
(2)能否有99%的把握认为其亲属的饮食习惯与年龄有关?并写出简要分析.
P(K2≥k00.0500.0100.001
k03.8416.63510.828
附表:
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.C1,C2是以原点为圆心的两个同心圆,C1的半径r1=2,C2的半径r2=6,C1上有一点P,C2上有一点Q,各以每秒1弧度的角速度绕原点旋转,P点按逆时针方向运动,Q点安顺时针方向运动,当t=0时,P点在x轴上,Q点在y轴上,求PQ中点M的运动轨迹的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.给出两个命题,命题p:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,命题q:函数$y=(a+\frac{1}{2})x-1$为增函数.若p∨q为真,求实数a取值的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.直线l的极坐标方程为:ρcosθ-ρsinθ+4=0,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)
(1)写出l与C的直角坐标方程
(2)求C上的点到l距离的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(Ⅰ)${\;}_{\;}{0.064^{{-_{\;}}\frac{1}{3}}}-{({-\frac{4}{5}})^0}+{0.01^{\frac{1}{2}}}$
(Ⅱ)${\;}_{\;}2lg2+3lg5+lg\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设log142=a,则log147等于(  )
A.$\frac{a}{2}$B.$\frac{2}{a}$C.1+aD.1-a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$\frac{co{s}^{2}α-si{n}^{2}α}{sinα-cosα}$=$\frac{\sqrt{2}}{4}$,则sinαsin($\frac{π}{2}$+α)等于(  )
A.-$\frac{1}{4}$B.$\frac{5}{8}$C.-$\frac{7}{16}$D.$\frac{9}{16}$

查看答案和解析>>

同步练习册答案