精英家教网 > 高中数学 > 题目详情

【题目】设函数,则下列命题中正确的个数是( )

时,函数上是单调增函数;

时,函数上有最小值;

函数的图象关于点对称;

方程可能有三个实数根.

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

转化为分段函数,进而分别判断.

= ,

b>0,结合一元二次方程根与系数的关系,可判断y=,在(-,0 )上是增函数,y=[0,+)上是增函数,且x=0时,函数图象连续,故f(x)R上是单调增函数.故①正确

b<0时,f(x)的值域是R,没有最小值,故错误;

f(x)=|x|x+bx,f(-x)=-f(x),故函数f(x)是奇函数,即函数f(x)的图象关于(0,0)对称.而函数f(x)=|x|x+bx+c的图象是由函数f(x)=|x|x+bx的图象向上平移个单位 ,故图象一定是关于(0,c)对称的,故正确;

b=-2,c=0,则f(x)=|x|x-2x=0,解得x=0,2,-2.所以正确.

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点是函数)图象上的任意两点,且角的终边经过点,若时,的最小值为

1)求函数的解析式;

2)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,倾斜角为 的直线l与曲线C: ,(α为参数)交于A,B两点,且|AB|=2,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则直线l的极坐标方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的一元二次方程.

(1)若是一枚骰子掷两次所得到的点数,求方程有两正根的概率;

(2)若,求方程没有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若a=1,求f(x)的极值;

(2)若存在x0[1,e],使得f(x0)<g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当)的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:

(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?

(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,如果同时满足以下三条:对任意的,总有,都有成立,则称函数为理想函数.

(1) 若函数为理想函数,求的值;

(2)判断函数是否为理想函数,并予以证明;

(3) 若函数为理想函数,假定,使得,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校举办的集体活动中,设计了如下有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得1分、2分、3分的奖励,游戏还规定,当选手闯过一关后,可以选择得到相应的分数,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部分数都归零,游戏结束。设选手甲第一关、第二关、第三关的概率分别为,选手选择继续闯关的概率均为,且各关之间闯关成功互不影响

(I)求选手甲第一关闯关成功且所得分数为零的概率

(II)设该学生所得总分数为X,X的分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的右焦点为( ,0),离心率为
(1)求椭圆C的标准方程;
(2)若动点P(x0 , y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.

查看答案和解析>>

同步练习册答案