【题目】设函数,则下列命题中正确的个数是( )
①当时,函数在上是单调增函数;
②当时,函数在上有最小值;
③函数的图象关于点对称;
④方程可能有三个实数根.
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
将转化为分段函数,进而分别判断.
= ,
当b>0时,结合一元二次方程根与系数的关系,可判断y=,在(-,0 )上是增函数,y=,在[0,+)上是增函数,且x=0时,函数图象连续,故f(x)在R上是单调增函数.故①正确;
当b<0时,f(x)的值域是R,没有最小值,故②错误;
若f(x)=|x|x+bx,f(-x)=-f(x),故函数f(x)是奇函数,即函数f(x)的图象关于(0,0)对称.而函数f(x)=|x|x+bx+c的图象是由函数f(x)=|x|x+bx的图象向上(下)平移个单位 ,故图象一定是关于(0,c)对称的,故③正确;
令b=-2,c=0,则f(x)=|x|x-2x=0,解得x=0,2,-2.所以④正确.
故选C.
科目:高中数学 来源: 题型:
【题目】已知点,是函数(,)图象上的任意两点,且角的终边经过点,若时,的最小值为.
(1)求函数的解析式;
(2)当时,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,倾斜角为 的直线l与曲线C: ,(α为参数)交于A,B两点,且|AB|=2,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则直线l的极坐标方程是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当中()的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:
(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义域为的函数,如果同时满足以下三条:①对任意的,总有;②;③若,都有成立,则称函数为理想函数.
(1) 若函数为理想函数,求的值;
(2)判断函数是否为理想函数,并予以证明;
(3) 若函数为理想函数,假定,使得,且,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校举办的集体活动中,设计了如下有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得1分、2分、3分的奖励,游戏还规定,当选手闯过一关后,可以选择得到相应的分数,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部分数都归零,游戏结束。设选手甲第一关、第二关、第三关的概率分别为,,,选手选择继续闯关的概率均为,且各关之间闯关成功互不影响
(I)求选手甲第一关闯关成功且所得分数为零的概率
(II)设该学生所得总分数为X,求X的分布列与数学期望
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: + =1(a>b>0)的右焦点为( ,0),离心率为 .
(1)求椭圆C的标准方程;
(2)若动点P(x0 , y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com