精英家教网 > 高中数学 > 题目详情

设f(x)是定义在(-∞,+∞)上的奇函数,且x>0时,f(x)=x2+1,则f(-2)=


  1. A.
    -5
  2. B.
    5
  3. C.
    3
  4. D.
    -3
A
分析:根据要求的是-2的函数值,先求出x=2的函数值,根据函数是一个奇函数,得到两个函数值之间的互为相反数的关系,得到结果.
解答:∵f(x)是定义在R上的奇函数,
当x>0时,f(x)=x2+1,
∴f(2)=22+1=5
∴f(-2)=-f(2)=-5,
故选A.
点评:本题考查函数的奇偶性的应用,解题的过程中,一定要抓住函数性质,注意应用函数的性质,本题的运算量很小,是一个送分题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线x=
12
对称,则f(1)+f(2)+f(3)+f(4)+f(5)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

例2.设f(x)是定义在[-3,
2
]上的函数,求下列函数的定义域(1)y=f(
x
-2)
(2)y=f(
x
a
)(a≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在[-1,1]上的奇函数,g(x)的图象与f(x)的图象关于直线x=1对称,而当x∈[2,3]时,g(x)=-x2+4x-4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)对任意x1,x2∈[0,1],且x1≠x2,求证:|f(x2)-f(x1)|<2|x2-x1|;
(Ⅲ)对任意x1,x2∈[0,1],且x1≠x2,求证:|f(x2)-f(x1)|≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图象,则f(2013)+f(2014)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江一模)设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x-2)=f(x+2)且当x∈[-2,0]时,f(x)=(
1
2
x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是
34
,2)
34
,2)

查看答案和解析>>

同步练习册答案