精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求函数的单调区间;

(2)当时,函数上的最小值为,若不等式有解,求实数的取值范围.

【答案】(1)答案见解析;(2)

【解析】

1)求出导函数,然后根据的符号进行分类讨论,并借助解不等式组的方法得到单调区间;(2)根据(1)中的结论求出当时,函数上的最小值,因此问题转化为有解,即有解,构造函数,求出函数的最小值即可得到所求.

(1)由

①当时,

,得

所以,或,即

解得

,得

所以,即

解得

所以函数的单调递增区间为;单调递减区间为

②当时,

,得,由①可知

,得,由①可知

所以函数的单调递增区间为;单调递减区间为

综上可得,

时,的单调递增区间为;单调递减区间为

时,的单调递增区间为;单调递减区间为

(2)由(1)可知若,则当时,函数上单调递减,在上单调递增,

所以

所以不等式有解等价于有解,

有解

,则

所以当时,单调递减,

时,单调递增,

所以的极小值也是最小值,且最小值为

从而

所以实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设为不同的两点,直线的方程为,设,其中均为实数.下列四个说法中:

①存在实数,使点在直线上;

②若,则过两点的直线与直线重合;

③若,则直线经过线段的中点;

④若,则点在直线的同侧,且直线与线段的延长线相交.

所有结论正确的说法的序号是______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率低于,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生09之间取整数值的随机数,指定1234表示命中,567890表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为(

A.0.35B.0.25C.0.20D.0.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,圆,直线,直线过点,倾斜角为,以原点为极点,轴的正半轴为极轴建立极坐标系.

(1)写出直线与圆的交点极坐标及直线的参数方程;

(2)设直线与圆交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,的中点,为正三角形,,平面平面.

(1)求证:

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 分别是椭圆的左、右焦点,焦距为,动弦平行于轴,且.

(1)求椭圆的方程;

(2)过分别作直线交椭圆于,且,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】谢尔宾斯基三角形(Sierpinskitriangle)是由波兰数学家谢尔宾斯基在1915年提出的,如图先作一个三角形,挖去一个中心三角形(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个中心三角形,我们用白色三角形代表挖去的面积,那么灰色三角形为剩下的面积(我们称灰色部分为谢尔宾斯基三角形).若通过该种方法把一个三角形挖3次,然后在原三角形内部随机取一点,则该点取自谢尔宾斯基三角形的概率为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且2的等差中项.数列中,,点在直线上.

1)求的值;

2)求数列的通项公式;

3)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以椭圆的中心O为圆心,以为半径的圆称为该椭圆的伴随.已知椭圆的离心率为,且过点

1)求椭圆C及其伴随的方程;

2)过点伴随的切线l交椭圆CAB两点,记为坐标原点)的面积为,将表示为m的函数,并求的最大值.

查看答案和解析>>

同步练习册答案