精英家教网 > 高中数学 > 题目详情

【题目】mn为不重合的两条直线,为不重合的两个平面,则下列命题中,所有真命题的个数是______

,则,则

,则一定存在直线l,使得

【答案】3

【解析】

中,m与n相交、平行或异面;在中,由面面平行的判定定理得αβ;在中,由面面垂直的判定定理得αβ;在中,无论平行α与β相交不是平行,一定存在直线l,使得l∥α,l∥β.

mn为不重合的两条直线,为不重合的两个平面,知:

中,若,则mn相交、平行或异面,故错误;

中,若,则由面面平行的判定定理得,故正确;

中,若,则由面面垂直的判定定理得,故正确;

中,无论平行相交不是平行,一定存在直线l,使得,故正确.

故答案为:3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率为,且过点P

(1)求椭圆的标准方程;

(2)已知斜率为1的直线l过椭圆的右焦点F交椭圆于A.B两点,求弦AB的长。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是(

A. 至少有一个黑球都是红球

B. 至少有一个黑球至少有一个红球

C. 至少有一个黑球都是黑球

D. 恰有一个黑球恰有两个黑球

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2|cosx|sinx+sin2x,给出下列四个命题:
①函数f(x)的图象关于直线 对称;
②函数f(x)在区间 上单调递增;
③函数f(x)的最小正周期为π;
④函数f(x)的值域为[﹣2,2].
其中真命题的序号是 . (将你认为真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.
(3)探讨函数F(x)=lnx﹣ + 是否存在零点?若存在,求出函数F(x)的零点,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆C,直线l

时,若圆C与直线l交于AB两点,过点AB分别作l的垂线与y轴交于DE两点,求的值;

过直线l上的任意一点P作圆的切线为切点,若平面上总存在定点N,使得,求圆心C的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某学校进行的一次语文与历史成绩中,随机抽取了25位考生的成绩进行分析,25位考生的语文成绩已经统计在茎叶图中,历史成绩如下:
(Ⅰ)请根据数据在茎叶图中完成历史成绩统计;
(Ⅱ)请根据数据完成语文成绩的频数分布表及语文成绩的频率分布直方图;

语文成绩的频数分布表:

语文成绩分组

[50,60)

[60,70)

[70,80)

[90,100)

[100,110)

[110,120]

频数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上一点与椭圆右焦点的连线垂直于x轴,直线l:y=kx+m与椭圆C相交于A,B两点(均不在坐标轴上).

(1)求椭圆C的标准方程;

(2)设O为坐标原点,若△AOB的面积为,试判断直线OA与OB的斜率之积是否为定值?若是请求出,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知三棱柱ABC-A1B1C1的所有棱长均为1,且AA1底面ABC,则三棱锥B1-ABC1的体积为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案