精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,直线的参数方程为,曲线的极坐标方程为.

(1)写出直线的直角坐标方程和曲线的普通方程;

(2)求直线与曲线的交点的直角坐标.

【答案】(1)直线的直角坐标方程为;∵曲线的普通方程为.

(2) .

【解析】试题分析:(1)直线的参数方程消去参数能求出直角坐标方程;曲线的极坐标方程化为,利用 能求出曲线的普通方程;(2)曲线的直角坐标方程为,与直线联立方程组,由此能求出直线与曲线的交点的直角坐标.

试题解析:(1)∵直线的参数方程为,∴,代入

,即.

∴直线的直角坐标方程为

∵曲线的极坐标方程为,∴,∴.

.

(2)曲线的直角坐标方程为

,解得.

∴直线与曲线的交点的直角坐标为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,cos2A﹣3cos(B+C)﹣1=0.
(1)求角A的大小;
(2)若△ABC的外接圆半径为1,试求该三角形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx﹣ (a>0),g(x)=4x+ + ,且y=f(x+ )为偶函数.设集合A={x|t﹣1≤x≤t+1}.
(1)若t=﹣ ,记f(x)在A上的最大值与最小值分别为M,N,求M﹣N;
(2)若对任意的实数t,总存在x1 , x2∈A,使得|f(x1)﹣f(x2)|≥g(x)对x∈[0,1]恒成立,试求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数的图像在点处的切线与直线平行,求实数的值;

(Ⅱ)讨论函数的单调性;

(Ⅲ)若时,在定义域内总有成立,试求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大小;
(2)求sinB+sinC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数存在单调递减区间,求实数的取值范围;

(2)设是函数的两个极值点,若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的焦点为F,过F作垂直于x轴的直线交抛物线于A,B,两点,△AOB的面积为8,直线l与抛物线C相切于Q点,P是l上一点(不与Q重合).

(1)求抛物线C的方程;
(2)若以线段PQ为直径的圆恰好经过F,求|PF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体ABCD﹣A1B1C1D1中,点P是正方体棱上的一点(不包括棱的端点),满足|PB|+|PD1|= 的点P的个数为;若满足|PB|+|PD1|=m的点P的个数为6,则m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆经过点,离心率,直线的方程为.

求椭圆的方程;

是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记 的斜率为 .问:是否存在常数,使得?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案