分析 由已知中三棱锥A-BCD中,AB⊥AD,AC⊥AD,∠BAC=60°,AB=AC=AD=4,我们易计算出三棱锥A-BCD的体积,又由点P,Q分别在侧面ABC棱AD上运动,PQ=2,M为线段PQ中点,我们可以判断M的轨迹与三棱锥转成的两个几何体的体积,进而得到答案.
解答 解:∵三棱锥A-BCD中,AB⊥AD,AC⊥AD,∠BAC=60°,AB=AC=AD=4,
则棱锥A-BCD的体积V=$\frac{1}{3}×\frac{1}{2}×4×4×\frac{\sqrt{3}}{2}×4$=$\frac{16\sqrt{3}}{3}$
又∵点P,Q分别在侧面ABC棱AD上运动,PQ=2,M为线段PQ中点,
∴点M的轨迹在以A为球心以1半径的球面上
则点M的轨迹把三棱锥A-BCD分成上、下两部分的体积之比为:
$\frac{1}{12}•\frac{4}{3}π$:($\frac{16\sqrt{3}}{3}$-$\frac{1}{12}•\frac{4}{3}π$)=$\frac{π}{{48\sqrt{3}-π}}$,
故答案为$\frac{π}{{48\sqrt{3}-π}}$.
点评 本题考查的知识点是棱锥的体积及球的体积,其中判断出M的轨迹在以A为球心以1半径的球面上是解答本题的关键.
科目:高中数学 来源: 题型:选择题
A. | m>0>n | B. | 0>m>n | ||
C. | m>n>0 | D. | m,n与0的大小关系不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1 | B. | $\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1 | C. | y2-x2=50 | D. | x2-y2=10 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com