精英家教网 > 高中数学 > 题目详情

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

【答案】(1)直线普通方程:,曲线直角坐标方程:;(2).

【解析】

1)消去直线参数方程中的参数即可得到其普通方程;将曲线极坐标方程化为,根据极坐标和直角坐标互化原则可得其直角坐标方程;(2)将直线参数方程代入曲线的直角坐标方程,根据参数的几何意义可知,利用韦达定理求得结果.

1)由直线参数方程消去可得普通方程为:

曲线极坐标方程可化为:

则曲线的直角坐标方程为:,即

2)将直线参数方程代入曲线的直角坐标方程,整理可得:

两点对应的参数分别为:,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,求证:

1在区间存在唯一极大值点;

2上有且仅有2个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)

某学校餐厅新推出四款套餐,某一天四款套餐销售情况的条形图如下.为了了解同学对新推出的四款套餐的评价,对每位同学都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20分进行统计,统计结果如下面表格所示:

(1) 若同学甲选择的是款套餐,求甲的调查问卷被选中的概率;

(2) 若想从调查问卷被选中且填写不满意的同学中再选出2人进行面谈,求这2人中至少有一人选择的是款套餐的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,若输出的数据为141,则判断框中应填入的条件为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

中,内角对边的边长分别是,已知

的面积等于,求

,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,两焦点与短轴的一个端点的连线构成的三角形面积为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设与圆O相切的直线l交椭圆CAB两点(O为坐标原点),求△AOB面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于异面直线,有下列五个命题:

①过直线有且仅有一个平面,使

②过直线有且仅有一个平面,使

③在空间存在平面,使

④在空间不存在平面,使

⑤过异面直线外一点一定存在一个平面,使其中,

正确的命题的个数为(

A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)为奇函数,且相邻两对称轴间的距离为

1)当时,求的单调递减区间;

2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正整数的所有约数之和用表示,(比如).试答下列各问:

(1)证明:如果互质,那么

(2)当的约数(),且.试证是质数.其次,如果是正整数,是质数,试证也是质数;

(3)设为正整数,为奇数),且.试证存在质数,使得.

查看答案和解析>>

同步练习册答案