精英家教网 > 高中数学 > 题目详情
(2013•广州二模)如图,一个等腰直角三角形的直角边长为2,分别以三个顶点为 圆心,l为半径在三角形内作圆弧,三段圆弧与斜边围成区域M (图中白色部分).若在此三角形内随机取一点P,则点P落在区 域M内的概率为
1-
π
4
1-
π
4
分析:由题意知本题是一个几何概型,先试验发生包含的所有事件是直角三角形的面积S,然后求出阴影部分的面积,代入几何概率的计算公式即可求解
解答:解:由题意知本题是一个几何概型,
∵试验发生包含的所有事件是直角三角形的面积S=
1
2
×2×2
=2
阴影部分的面积S1=
1
4
π+
π
8
×2=
π
2

点P落在区 域M内的概率为 P=
2-
π
2
2
=1-
π
4

故答案为:1-
π
4
点评:本题考查几何概型,且把几何概型同几何图形的面积结合起来,几何概型和古典概型是高中必修中学习的,高考时常以选择和填空出现,有时文科会考这种类型的解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•广州二模)如果函数f(x)=ln(-2x+a)的定义域为(-∞,1),则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)(几何证明选讲选做题)
在△BC中,D是边AC的中点,点E在线段BD上,且满足BE=
1
3
BD,延长AE交 BC于点F,则
BF
FC
的值为
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)直线y=k(x+1)与圆(x+1)2+y2=1相交于A,B两点,则|AB|的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)在等差数列{an}中,a1+a2=5,a3=7,记数列{
1anan+1
}的前n项和为Sn
(1)求数列{an}的通项公式;
(2)是否存在正整数m、n,且1<m<n,使得S1、SntSn成等比数列?若存在,求出所有符合条件的m,n值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)设an是函数f(x)=x3+n2x-1(n∈N+)的零点.
(1)证明:0<an<1;
(2)证明:
n
n+1
a1+a2+…+an
3
2

查看答案和解析>>

同步练习册答案