【题目】已知是函数的零点,.
(1)求实数的值;
(2)若不等式在上恒成立,求实数的取值范围;
(3)若方程有三个不同的实数解,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机购为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事用户车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:
①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车恰好有一辆为事故车的概率;
②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小明和爸爸妈妈、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小 明的父母至少有一人与小明相邻,则不同的坐法总数为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为和,过点的直线与椭圆相交与两点,且.
(1)求椭圆的离心率;
(2)求直线的斜率;
(3)设点与点关于坐标原点对称,直线上有一点在的外接圆上,且,求椭圆方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象过点.
(1)求的值并求函数的值域;
(2)若关于的方程在有实根,求实数的取值范围;
(3)若函数,则是否存在实数,对任意,存在使成立?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017 年成交的二手车的交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.在图1对使用时间的分组中,将使用时间落入各组的频率视为概率.
(1)记“在2017年成交的二手车中随机选取一辆,该车的使用年限在”,为事件,试估计的概率;
(2)根据该汽车交易市场的历史资料,得到散点图如图,其中 (单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.
由散点图判断,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中):
①根据回归方程类型及表中数据,建立关于的回归方程;
②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格的佣金,对使用时间8年以上(不含 8年)的二手车收取成交价格的佣金. 在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.
附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,;
②参考数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)求直线的极坐标方程和曲线的直角坐标方程;
(2)若直线与曲线交于两点,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com