【题目】是边长为的等边三角形,E、F分别为AB、AC的中点,,沿EF把折起,使点A翻折到点P的位置,连接PB、PC,则四棱锥的外接球的表面积的最小值为________,此时四棱锥的体积为________.
【答案】
【解析】
根据题意,当梯形BCEF的外接圆的圆心为四棱锥的外接球的球心时,外接球的半径最小,易得BC的中点即为梯形的外接圆圆心,也即为四棱锥的球心,进而求解.
如图所示:
四边形BCEF为梯形,则必有外接圆,设O为梯形BCEF的外接圆的圆心,即为外接球的球心时,外接球的半径最小,也就使得外接球的表面积最小,过A作BC的垂线交BC于点M,交EF于点N,连接PM,PN,点O必在AM上,
因为E,F,分别为中点,
所以,
所以,即是直角三角形,
因为是边长为的等边三角形,E、F分别为AB、AC的中点,
所以,
所以点M为为梯形BCEF的外接圆的圆心,即点O与点M重合,
所以,,
所以四棱锥的高为:,
所以棱锥的外接球的表面积的最小值为,
此时四棱锥的体积为.
故答案为:(1). (2).
科目:高中数学 来源: 题型:
【题目】某市为提升中学生的数学素养,激发学生学习数学的兴趣,举办了一次“数学文化知识大赛”,分预赛和复赛两个环节.已知共有8000名学生参加了预赛,现从参加预赛的全体学生中随机地抽取100人的预赛成绩作为样本,得到如下频率分布直方图.
(1)规定预赛成绩不低于80分为优良,若从上述样本中预赛成绩不低于60分的学生中随机地抽取2人,求恰有1人预赛成绩优良的概率;
(2)由频率分布直方图可认为该市全体参加预赛学生的预赛成绩Z服从正态分布N(μ,σ2),其中μ可近似为样本中的100名学生预赛成绩的平均值(同一组数据用该组区间的中点值代替),且σ2=362.利用该正态分布,估计全市参加预赛的全体学生中预赛成绩不低于91分的人数;
(3)预赛成绩不低于91分的学生将参加复赛,复赛规则如下:①每人的复赛初始分均为100分;②参赛学生可在开始答题前自行决定答题数量n,每一题都需要“花”掉(即减去)一定分数来获取答题资格,规定答第k题时“花”掉的分数为0.1k(k∈(1,2n));③每答对一题加1.5分,答错既不加分也不减分;④答完n题后参赛学生的最终分数即为复赛成绩.已知学生甲答对每道题的概率均为0.7,且每题答对与否都相互独立.若学生甲期望获得最佳的复赛成绩,则他的答题数量n应为多少?
(参考数据:;若Z~N(μ,σ2),则P(μ﹣σ<Z<μ+σ)≈0.6827,P(μ﹣2σ<Z<μ+2σ)≈0.9545,P(μ﹣3σ<Z<μ+3σ)≈0.9973.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2a=2bcosC+csinB.
(Ⅰ)求tanB;
(Ⅱ)若C,△ABC的面积为6,求BC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为D,若存在实常数及,对任意,当且时,都有成立,则称函数具有性质.
(1)判断函数是否具有性质,并说明理由;
(2)若函数具有性质,求及应满足的条件;
(3)已知函数不存在零点,当时具有性质(其中,),记,求证:数列为等比数列的充要条件是或.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧面为等边三角形,且垂直于底面, ,分别是的中点.
(1)证明:平面平面;
(2)已知点在棱上且,求直线与平面所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+lnx(a∈R).
(1)当a=时,求f(x)在区间[1,e]上的最大值和最小值;
(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g(x)为f1(x),f2(x)的“活动函数”.已知函数. 。若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是正方形,点在以为直径的半圆弧上(不与,重合),为线段的中点,现将正方形沿折起,使得平面平面.
(1)证明:平面.
(2)若,当三棱锥的体积最大时,求到平面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com