已知函数f(x)=ax3+bx2+cx(a≠0)的定义域为R,它的图象关于原点对称,且当x=-1时,函数取极值1.
(1)求a,b,c的值;
(2)求证:曲线y=f(x)上不存在两个不同的点A、B,使过A、B两点的切线都垂直于直线AB.
【答案】
分析:(1)通过图象关于原点对称求出b的值,再根据当x=-1时,函数取极值1,建立两个方程组,解之即可;
(2)由过A、B两点的切线都垂直于直线AB可知两切线平行,根据切线与AB垂直建立等量关系,验证判别式是否大于零即可.
解答:解:(1)由已知,f(-x)=-f(x),即bx
2=0恒成立,
故b=0.所以f(x)=ax
3+cx,f′(x)=3ax
2+c.
由
得
,
解得
.
(2)设A(x
1,y
1),B(x
2,y
2)(x
1≠x
2),
由
,过A、B两点的切线平行,故f′(x
1)=f′(x
2),
得:x
12=x
22.由于x
1≠x
2,所以x
1=-x
2,
于是y
1=-y
2,
.因为过A点的切线垂直于直线AB,
所以
,△=-12<0,方程无解.
因此,不存在两个不同的点A、B,使过A、B的切线都垂直于直线AB.
点评:本题主要考查了利用导数研究函数的极值,考查利用数学知识分析问题、解决问题的能力,属于基础题.