精英家教网 > 高中数学 > 题目详情

已知椭圆的长轴长是短轴长的两倍,焦距为.
(1)求椭圆的标准方程;
(2)设不过原点的直线与椭圆交于两点,且直线的斜率依次成等比数列,求△面积的取值范围.

(1) ;(2)△面积的取值范围为 。

解析试题分析:(1)由已知得 ∴方程:  (4分)
(2)由题意可设直线的方程为: 
联立 消去并整理,得:
则△ ,
此时设
于是  (7分)
又直线的斜率依次成等比数列,
  
 得:  .又由△ 得:
显然 (否则:,则中至少有一个为0,直线 中至少有一个斜率不存在,矛盾!)                     (10分)
设原点到直线的距离为,则

故由得取值范围可得△面积的取值范围为 (13分)
考点:本题主要考查椭圆标准方程,直线与椭圆的位置关系。
点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题求椭圆标准方程时,主要运用了椭圆的定义及几何性质。(2)作为研究点到直线的距离最值问题,利用了函数思想。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

椭圆的离心率为,两焦点分别为,点是椭圆C上一点,的周长为16,设线段MOO为坐标原点)与圆交于点N,且线段MN长度的最小值为.
(1)求椭圆C以及圆O的方程;
(2)当点在椭圆C上运动时,判断直线与圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A(,),B(,)是函数的图象上的任意两点(可以重合),点M在直线上,且.
(1)求+的值及+的值
(2)已知,当时,+++,求
(3)在(2)的条件下,设=为数列{}的前项和,若存在正整数
使得不等式成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,线段的两个端点分别分别在轴、轴上滑动,,点上一点,且,点随线段的运动而变化.

(1)求点的轨迹方程;
(2)设为点的轨迹的左焦点,为右焦点,过的直线交的轨迹于两点,求的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆C的两个焦点为F1F2,点B1为其短轴的一个端点,满足

(1)求椭圆C的方程;
(2)过点M 做两条互相垂直的直线l1l2l1与椭圆交于点ABl2与椭圆交于点CD,求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,F1,F2是离心率为的椭圆
C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中点M在直线l上,线段AB的中垂线与C交于P,Q两点.

(Ⅰ) 求椭圆C的方程;
(Ⅱ) 是否存在点M,使以PQ为直径的圆经过点F2,若存在,求出M点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线经过抛物线的焦点F,且与抛物线相交于A、B两点.

(1)若,求点A的坐标;
(2)若直线的倾斜角为,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

双曲线与椭圆有相同的焦点,且该双曲线
的渐近线方程为
(1)求双曲线的标准方程;
(2) 过该双曲线的右焦点作斜率不为零的直线与此双曲线的左,右两支分别交于点
,当轴上的点满足时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共14分)
已知椭圆C:,左焦点,且离心率
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线与椭圆C交于不同的两点不是左、右顶点),且以为直径的圆经过椭圆C的右顶点A.   求证:直线过定点,并求出定点的坐标.

查看答案和解析>>

同步练习册答案