精英家教网 > 高中数学 > 题目详情

【题目】下列选项中,表示同一集合的是(
A.A={0,1},B={(0,1)}
B.A={2,3},B={3,2}
C.A={x|﹣1<x≤1,x∈N},B={1}
D.
E.

【答案】B
【解析】解:在A中,∵A={0,1}是两个元素0,1组成的集合,

B={(0,1)}是一个点(0,1)组成的点集,

∴集合A与B表示的不是同一集合;

在B中,∵集合中的元素具有无序性,

A={2,3},B={3,2},

∴集合A与B表示的是同一集合;

在C中,∵A={x|﹣1<x≤1,x∈N}={0,1},B={1},

∴集合A与B表示的不是同一集合;

在D中,∵A=,B= ={0},B不是空集,

∴集合A与B表示的不是同一集合;

E与D相同,∴集合A与B表示的不是同一集合.

故选B.

【考点精析】解答此题的关键在于理解集合的相等关系的相关知识,掌握只要构成两个集合的元素是一样的,就称这两个集合相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了得到周期y=sin(2x+ )的图象,只需把函数y=sin(2x﹣ )的图象(
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为矩形,四边形ADEF为梯形,AD∥FE,∠AFE=60°,∠AED=90°,且平面ABCD⊥平面ADEF,AF=FE=AB= AD=2,点G为AC的中点.
(Ⅰ)求证:平面BAE⊥平面DCE;
(Ⅱ)求三棱锥B﹣AEG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= +lg(x+1)的定义域为(
A.[﹣1,2]
B.[﹣1,2)
C.(﹣1,2]
D.(﹣1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ax2﹣(2a+1)x+2lnx(a∈R)
(1)当a= 时,求函数f(x)的单调区间;
(2)设g(x)=(x2﹣2x)ex , 如果对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题q:对任意实数x,不等式x2﹣2x+m≥0恒成立;命题q:方程 表示焦点在x轴上的双曲线.
(1)若命题q为真命题,求实数m的取值范围;
(2)若命题:“p∨q”为真命题,且“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD,底面ABCD为正方形,侧面PAD为直角三角形,且PA=PD,面PAD⊥面ABCD,E、F分别为AB、PD的中点.
(Ⅰ)求证:EF∥面PBC;
(Ⅱ)求证:AP⊥面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集为全体实数R,集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a}.
(1)求(RA)∩B;
(2)若A∩C≠,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD= ,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(1)求证:PO⊥平面ABCD;
(2)求异面直线PB与CD所成角的余弦值;
(3)线段AD上是否存在点Q,使得它到平面PCD的距离为 ?若存在,求出 的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案