精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱ABC-A1B1C1中,AB=AC=1,BAC=90°,异面直线A1B与B1C1所成的角为60°.

(1)求该三棱柱的体积;

(2)设D是BB1的中点,求DC1与平面A1BC1所成角的正弦值.

【答案】(1);(2)

【解析】

(1)如图,以A点为原点,为x,y,z轴正方向,建立空间直角坐标系.利用异面直线A1B与B1C1所成的角为60°求得h=1即得该三棱柱的体积.(2)利用向量法求DC1与平面A1BC1所成角的正弦值.

(1)如图,以A点为原点,为x,y,z轴正方向,建立空间直角坐标系.

设AA1=h,则B(1,0,0),C(0,1,0),A1(0,0,h),

=(-1,0,h),=(-1,1,0).

因为直线A1B与B1C1所成的角为60°,

所以|cos<>|=,

解得h=1.

于是三棱柱体积V=Sh=×1×1=.

(2)由(1)知=(-1,0,1),C1(0,1,1),=(-1,1,1).

设平面A1BC1的法向量n=(x,y,z),

可取n=(1,0,1).

又因为D.

于是sin θ=|cos<,n>|=,

所以DC1与平面A1BC1所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3 ax2 , a∈R,
(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)求直线CE与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠A=60°,c= a.(13分)
(1)求sinC的值;
(2)若a=7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD-A1B1C1D1,则直线BC1与平面A1BD所成的角的余弦值是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(Ⅰ)EF∥平面ABC;
(Ⅱ)AD⊥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点),且两个焦点的坐标依次为(1,0)和(1,0).

(Ⅰ)求椭圆的标准方程;

(Ⅱ)是椭圆上的两个动点,为坐标原点,直线的斜率为,直线的斜率为,求当为何值时,直线与以原点为圆心的定圆相切,并写出此定圆的标准方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 等比数列{bn}的前n项和为Tn , a1=﹣1,b1=1,a2+b2=2.
(Ⅰ)若a3+b3=5,求{bn}的通项公式;
(Ⅱ)若T3=21,求S3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M过C(1,-1),D(-1,1)两点,且圆心M在x+y-2=0上.

(1)求圆M的方程;

(2)设点P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.

查看答案和解析>>

同步练习册答案