精英家教网 > 高中数学 > 题目详情

【题目】某医院为筛查某种疾病,需要检验血液是否为阳性,现有)份血液样本,有以下两种检验方式:(1)逐份检验,则需要检验次;(2)混合检验,将其中)份血液样本分别取样混合在一起检验.若检验结果为阴性,这份的血液全为阴性,因而这份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这份血液究竟哪几份为阳性,就要对这份再逐份检验,此时这份血液的检验次数总共为次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为

(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过4次检验就能把阳性样本全部检验出来的概率.

(2)现取其中)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为

(ⅰ)试运用概率统计的知识,若 ,试求关于的函数关系式

(ⅱ)若,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求的最大值.

参考数据:

【答案】(1)(2)(ⅰ))(ⅱ)4

【解析】

(1)根据古典概型概率公式即可得到结果;

(2)(ⅰ)由已知得,求出,利用 ,可得关于的函数关系式;(ⅱ)由题意可知,得可得,构建函数利用导数知识即可得到结果.

解:(1)

恰好经过4次检验就能把阳性样本全部检验出来的概率为

(2)(ⅰ)由已知得的所有可能取值为

,

=

,则

关于的函数关系式

(ⅱ)由题意可知,得

,设

时,,即上单调递减

的最大值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋子中有大小、形状完全相同的四个小球,分别写有和、“谐”、“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。利用电脑随机产生之间取整数值的随机数,分别用代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下组随机数:

由此可以估计,恰好第三次就停止摸球的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】擎天柱为了防止魔方落入霸天虎手中,打算用激光刀将其销毁.擎天柱使用的方法是:每次切割可将魔方分成两个体积之比为的六面体,每个六面体恰包含魔方的一个面,且任两次操作得到的截面在魔方中均有交点,而魔方的属性决定每次切割只能暂时将它割开,而无法分离,且只要它有的小正方体区域始终未被割到,就无法被销毁,证明:无论擎天柱切割多少次,均无法销毁魔方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数,下列对函数的性质描述正确的是(

A.函数的图象关于点对称

B.,则函数fx)有极值点

C.,函数在区间单调递减

D.若函数有且只有3个零点,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列判断正确的是(

A.的极大值点

B.函数有且只有1个零点

C.存在正实数,使得成立

D.对任意两个正实数,且,若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某校高一、高二、高三的学生志愿者人数分别为180,180,90.现采用分层抽样的方法从中抽取5名学生去某敬老院参加献爱心活动,若再从这5人中抽取2人作为负责人,则事件“抽取的2名同学来自不同年级”的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数,试讨论的单调性;

2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数,求的极值;

(2)证明:.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次数学竞赛中,某些选手是朋友关系.记所有选手的集合为X,对集合X的子集Y,若可以将这些人两两分组,且每组中两名选手均是朋友关系,则称子集Y“可两两分组”.已知集合X不可两两分组,且对于任意选手,若A、B不是朋友关系,则可两两分组,且X中没有一个人与其他所有人均为朋友关系证明:对任意选手,若a、b为朋友关系,b、c为朋友关系,则a、c也为朋友关系

查看答案和解析>>

同步练习册答案