精英家教网 > 高中数学 > 题目详情


(本小题满分14分)
已知函数在(0,1)内是增函数.
  (1)求实数的取值范围;
  (2)若,求证:

解:(1)由已知得内恒成立,即内恒成立,
(2)  ,又由(1)得当时,
内为增函数,则

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
知二次函数的图象经过点与点,设函数
处取到极值,其中
(1)求的二次项系数的值;
(2)比较的大小(要求按从小到大排列);
(3)若,且过原点存在两条互相垂直的直线与曲线均相切,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax+blnx在x=1处有极值.
(1)求a,b的值;
(2)判断函数y=f(x)的单调性并求出单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=logax(a>0且a≠1),如果对于任意的x∈[,2]都有|f(x)|≤1
成立,试求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 (1)若在区间上是增函数,求实数的取值范围; (2)若的极值点,求上的最大值;(3)在(2)的条件下,是否存在实数,使得函数的图像与函数的图象恰有3个交点?若存在,请求出实数的取值范围;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)若函数.
(1)求函数f(x)的单调递增区间。
(2)求在区间[-3,4]上的值域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知二次函数,直线,直线(其中为常数);.若直线12与函数的图象以及轴与函数的图象所围成的封闭图形如图阴影所示.
(Ⅰ)求的值;
(Ⅱ)求阴影面积关于的函数的解析式;
(Ⅲ)若问是否存在实数,使得的图象与的图象有且只有两个不同的交点?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知,则导函数是(  )

A.仅有最小值的奇函数 B.既有最大值,又有最小值的偶函数
C.仅有最大值的偶函数 D.既有最大值,又有最小值的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象过点,且在
单调递减,在上单调递增.
(1)求的解析式;
(2)若对于任意的,不等式恒成立,试问
这样的是否存在.若存在,请求出的范围,若不存在,说明理由

查看答案和解析>>

同步练习册答案