精英家教网 > 高中数学 > 题目详情

已知向量u=(x,y),v=(y,2y-x)的对应关系用v=f(u)来表示.

(1)证明对于任意向量a,b及常数m,n,恒有f(m a+n b)=mf(a)+nf(b)成立;

(2)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标.

(1)设a=(a1,a2),b=(b1,b2),则ma+nb=(ma1+nb1,ma2+nb2),所以f(ma+nb)=(ma2+nb2,2ma2+2nb2-ma1-nb1),

又mf(a)+nf(b)=m(a2,2a2-a1)+n(b2,2b2-b1)=(ma2+nb2,2ma2+2nb2-ma1-nb1),

所以f(ma+nb)=mf(a)+nf(b).

(2)f(a)=(1,2×1-1)=(1,1),f(b)=(0,-1).

练习册系列答案
相关习题

科目:高中数学 来源:设计必修四数学苏教版 苏教版 题型:044

已知向量u=(x,y)与向量v=(y,2y-x)的对应关系可用v=f(u)表示.

(1)求证:对于任意向量ab及常数m、n,f(ma+nb)=mf(a)+nf(b)恒成立;

(2)设a=(1,1),b=(1,0),求向量f(a)、f(b)的坐标;

(3)求使f(c)=(p,q)(p、q为常数)的向量c的坐标.

查看答案和解析>>

科目:高中数学 来源:设计必修四数学人教A版 人教A版 题型:044

已知向量u=(x,y),v=(y,2y-x)的对应关系用v=f(u)来表示.

(1)求证:对于任意向量ab及常数m、n恒有f(ma+nb)=mf(a)+nf(b)成立;

(2)求使f(c)=(p,q)(p、q为常数)的向量c的坐标.

查看答案和解析>>

科目:高中数学 来源:训练必修四数学人教A版 人教A版 题型:044

已知向量u=(x,y)与向量v=(y,2y-x)的对应关系可用vf(u)表示.

(1)证明对于任意向量ab及常数m、n,恒有f(ma+nb)=mf(a)+nf(b)成立;

(2)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标;

(3)求使f(c)=(3,5)成立的向量c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量u=(xy)与向量v=(y,2yx)的对应关系记作vf(u).

(1)求证:对于任意向量ab及常数mn,恒有f(manb)=mf(a)+nf(b);

(2)若a=(1,1),b=(1,0),用坐标表示f(a)和f(b);

(3)求使f(c)=(pq)(pq为常数)的向量c的坐标.

查看答案和解析>>

同步练习册答案