精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|2≤x≤6},B={x|2a≤x≤a+3}
(1)当a=2时,求A∪B
(2)当BA时,求实数a的取值范围.

【答案】
(1)解:集合A={x|2≤x≤6},B={x|2a≤x≤a+3}

当a=2时,B={x|4≤x≤5}

故得A∪B={x|2≤x≤6}


(2)解:∵BA,

当B=时,满足题意,此时2a>a+3,解得:a>3;

当B≠时,若BA,则 ,解得:1≤a≤3;

综上可知,实数a的取值范围是[1,+∞)


【解析】(1)当a=2时,求解集合B,根据集合的基本运算即可求A∪B;(2)根据BA,建立条件关系即可求实数a的取值范围.
【考点精析】解答此题的关键在于理解集合的并集运算的相关知识,掌握并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,根据下列条件解三角形,则其中有两个解的是(
A.b=10,A=45°,B=60°
B.a=60,c=48,B=120°
C.a=7,b=5,A=75°
D.a=14,b=16,A=45°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中a的值;
(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数g(x)=x2﹣2(x∈R), 则f(x)的值域是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1=2an+n﹣1,且a1=1.
(Ⅰ)求证:{an+n}为等比数列;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣4x﹣6y+12=0,点A(3,5).
(1)求过点A的圆的切线方程;
(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的定义域为(
A.(﹣∞,11)
B.(1,11]
C.(1,11)
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式x2﹣ax﹣2>0的解集为{x|x<﹣1或x>b}(b>﹣1).
(1)求a,b的值;
(2)当m>﹣ 时,解关于x的不等式(mx+a)(x﹣b)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log2(1﹣x).
(1)求f(x)及g(x)的解析式;
(2)求g(x)的值域.

查看答案和解析>>

同步练习册答案