【题目】如图,己知、是椭圆的左、右焦点,直线经过左焦点,且与 椭圆交两点,的周长为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在直线,使得为等腰直角三角形?若存在,求出直线的方程;若不存在,请说明理由.
【答案】(1)(2)不存在
【解析】分析:(Ⅰ)由题意可知:,,,即可求得椭圆方程;
(Ⅱ)分类讨论:假设,利用作差法,即可求得. (与,,矛盾),将直线方程代入椭圆方程由韦达定理:矛盾,故.再证明不可能为等腰直角三角形的直角腰,由勾股定理得:,此方程无解.故不存在这样的等腰直角三角形.
解析:(Ⅰ)设椭圆的半焦距为,因为直线与轴的交点为,故.
又的周长为,即,故,所以,.
因此,椭圆的标准方程力.
注:本小题也可以用焦点和离心率作为条件,即将周长换离心率.
(Ⅱ)不存在.理由如下:
先用反证法证明不可能为底边,即.
由题意知,设,,假设,则,
又,,代入上式,消去,得:.
因为直线斜率存在,所以直线不垂直于轴,所以,故.
(与,,矛盾)
联立方程,得: ,所以矛盾.
故.
再证明不可能为等腰直角三角形的直角腰.
假设为等腰直角三角形,不妨设为直角顶点.
设,则,在中,由勾股定理得:,此方程无解.
故不存在这样的等腰直角三角形.
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是( )
A.若事件与事件是互斥事件,则
B.若事件与事件满足条件:,则事件A与事件是对立事件
C.一个人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”是对立事件
D.把红、橙、黄3张纸牌随机分给甲、乙、丙3人,每人分得1张,则事件“甲分得红牌”与事件“乙分得红牌”是互斥事件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学的名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车.每车限坐名同学(乘同一辆车的名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的名同学中恰有名同学是来自于同一年级的乘坐方式共有_______种(有数字作答).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
(Ⅱ)求证:A为线段BM的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中, 底面, , , , 是棱上一点.
(I)求证: .
(II)若, 分别是, 的中点,求证: 平面.
(III)若二面角的大小为,求线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com